Product Citations: 61

Molecular and cellular dynamics of the developing human neocortex.

In Nature on 8 January 2025 by Wang, L., Wang, C., et al.

The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation1. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence. In parallel, we performed spatial transcriptomic analysis on a subset of the samples to illustrate spatial organization and intercellular communication. This atlas enables us to catalogue cell-type-specific, age-specific and area-specific gene regulatory networks underlying neural differentiation. Moreover, combining single-cell profiling, progenitor purification and lineage-tracing experiments, we have untangled the complex lineage relationships among progenitor subtypes during the neurogenesis-to-gliogenesis transition. We identified a tripotential intermediate progenitor subtype-tripotential intermediate progenitor cells (Tri-IPCs)-that is responsible for the local production of GABAergic neurons, oligodendrocyte precursor cells and astrocytes. Notably, most glioblastoma cells resemble Tri-IPCs at the transcriptomic level, suggesting that cancer cells hijack developmental processes to enhance growth and heterogeneity. Furthermore, by integrating our atlas data with large-scale genome-wide association study data, we created a disease-risk map highlighting enriched risk associated with autism spectrum disorder in second-trimester intratelencephalic neurons. Our study sheds light on the molecular and cellular dynamics of the developing human neocortex.
© 2025. The Author(s).

In this paper, we measured B cell function in elderly healthy individuals (EH) and in elderly patients with Type-2 Diabetes Mellitus (T2DM, ET2DM), which are treatment-naive, as compared to healthy young (YH) individuals. Results show a higher serum inflammatory status of elderly versus young individuals, and especially of ET2DM versus EH. This status is associated with a reduced response to the seasonal influenza vaccine and with increased frequencies of the circulating pro-inflammatory B cell subset called Double Negative (DN) B cells. B cells from ET2DM patients are not only more inflammatory but also hyper-metabolic as compared to those from EH controls. The results herein are to our knowledge the first to show that T2DM superimposed on aging further increases systemic and B cell intrinsic inflammation, as well as dysfunctional humoral immunity. Our findings confirm and extend our previously published findings showing that inflammatory B cells are metabolically supported.
Copyright © 2024 Frasca and Bueno.

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology

Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.CART cells induces similar internalization of CD5 on target cells, transiently shielding them from cytotoxicity. However, this protection is short-lived, as sustained activity of CD5.CART cells in patients with T cell malignancies results in full ablation of CD5+ T cells while sparing healthy T cells naturally lacking CD5. These results indicate that continuous downmodulation of the target antigen in CD5.CART cells produces effective fratricide resistance without undermining their on-target cytotoxicity.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow.

In Nature Communications on 17 May 2024 by Ferreira-Gomes, M., Chen, Y., et al.

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.
© 2024. The Author(s).

  • Immunology and Microbiology

NADPH oxidase exerts a B cell-intrinsic contribution to lupus risk by modulating endosomal TLR signals.

In The Journal of Experimental Medicine on 1 April 2024 by Liu, S., Lagos, J., et al.

Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.
© 2024 Liu et al.

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb