Product Citations: 11

Combined p14ARF and Interferon-β Gene Transfer to the Human Melanoma Cell Line SK-MEL-147 Promotes Oncolysis and Immune Activation.

In Frontiers in Immunology on 17 November 2020 by Cerqueira, O. L. D., Clavijo-Salomon, M. A., et al.

Immune evasion is an important cancer hallmark and the understanding of its mechanisms has generated successful therapeutic approaches. Induction of immunogenic cell death (ICD) is expected to attract immune cell populations that promote innate and adaptive immune responses. Here, we present a critical advance for our adenovirus-mediated gene therapy approach, where the combined p14ARF and human interferon-β (IFNβ) gene transfer to human melanoma cells led to oncolysis, ICD and subsequent activation of immune cells. Our results indicate that IFNβ alone or in combination with p14ARF was able to induce massive cell death in the human melanoma cell line SK-MEL-147, though caspase 3/7 activation was not essential. In situ gene therapy of s.c. SK-MEL-147 tumors in Nod-Scid mice revealed inhibition of tumor growth and increased survival in response to IFNβ alone or in combination with p14ARF. Emission of critical markers of ICD (exposition of calreticulin, secretion of ATP and IFNβ) was stronger when cells were treated with combined p14ARF and IFNβ gene transfer. Co-culture of previously transduced SK-MEL-147 cells with monocyte-derived dendritic cells (Mo-DCs) derived from healthy donors resulted in increased levels of activation markers HLA-DR, CD80, and CD86. Activated Mo-DCs were able to prime autologous and allogeneic T cells, resulting in increased secretion of IFNγ, TNF-α, and IL-10. Preliminary data showed that T cells primed by Mo-DCs activated with p14ARF+IFNβ-transduced SK-MEL-147 cells were able to induce the loss of viability of fresh non-transduced SK-MEL-147 cells, suggesting the induction of a specific cytotoxic population that recognized and killed SK-MEL-147 cells. Collectively, our results indicate that p14ARF and IFNβ delivered by our adenoviral system induced oncolysis in human melanoma cells accompanied by adaptive immune response activation and regulation.
Copyright © 2020 Cerqueira, Clavijo-Salomon, Cardoso, Citrangulo Tortelli Junior, Mendonça, Barbuto and Strauss.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

During inflammation, recruited monocytes can differentiate either into macrophages or dendritic cells (DCs); however, little is known about the environmental factors that determine this cell fate decision. Low extracellular pH is a hallmark of a variety of inflammatory processes and solid tumors. Here, we report that low pH dramatically promotes the differentiation of monocytes into DCs (monocyte-derived DCs [mo-DCs]). This process is associated with a reduction in glucose consumption and lactate production, the upregulation of mitochondrial respiratory chain genes, and the inhibition of mTORC1 activity. Interestingly, we also find that both serum starvation and pharmacological inhibition of mTORC1 markedly promote the differentiation of mo-DCs. Our study contributes to better understanding the mechanisms that govern the differentiation of monocytes into DCs and reveals the role of both extracellular pH and mTORC1 as master regulators of monocyte cell fate.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Despite the success of antiretroviral therapy (ART), latent HIV-1 continues to persist in a long-lived population of resting memory CD4+ T cells within those who are infected. Finding a safe and effective means to induce latency reversal (LR) during ART to specifically expose this latent HIV-1 cellular reservoir for immune elimination has been a major barrier to a functional cure.
In this study, we test the use of antigen-presenting type 1-polarized, monocyte-derived dendritic cells (MDC1) generated from chronic HIV-1-infected individuals on ART as a means to induce HIV-1 latency reversal in autologous CD4+ T cells harboring replication-competent provirus. We use the same MDC1 for ex-vivo generation of autologous HIV-1 antigen-specific CD8+ cytotoxic T cells (CTL) and test their effector responses against the MDC1-exposed HIV-1- infected CD4+ T cell targets.
MDC1 presentation of either HIV-1 or cytomegalovirus (CMV) antigens to CD4+ T cells facilitated HIV-1 LR. This antigen-driven MDC1-mediated LR was sharply diminished with blockade of the CD40L/CD40 'helper' signaling pathway. Importantly, these antigen-presenting MDC1 also activated the expansion of CTL capable of killing the exposed HIV-1-infected targets.
Inclusion of virus-associated MHC class II 'helper' antigens in MDC1-based HIV-1 immunotherapies could serve both as a targeted means to safely unmask antigen-specific CD4+ T cells harboring HIV-1, and to support CTL responses that can effectively target the MDC1-exposed HIV-1 cellular reservoir as a functional cure strategy. FUND: This study was supported by the NIH-NAID grants R21-AI131763, U01-AI35041, UM1-AI126603, and T32-AI065380.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Prostaglandin E2 Antagonizes TGF-β Actions During the Differentiation of Monocytes Into Dendritic Cells.

In Frontiers in Immunology on 11 July 2018 by Remes Lenicov, F., Paletta, A. L., et al.

Inflammatory dendritic cells (DCs) are a distinct subset of DCs that derive from circulating monocytes infiltrating injured tissues. Monocytes can differentiate into DCs with different functional signatures, depending on the presence of environment stimuli. Among these stimuli, transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) have been shown to modulate the differentiation of monocytes into DCs with different phenotypes and functional profiles. In fact, both mediators lead to contrasting outcomes regarding the production of inflammatory and anti-inflammatory cytokines. Previously, we have shown that human semen, which contains high concentrations of PGE2, promoted the differentiation of DCs into a tolerogenic profile through a mechanism dependent on signaling by E-prostanoid receptors 2 and 4. Notably, this effect was induced despite the huge concentration of TGF-β present in semen, suggesting that PGE2 overrides the influence exerted by TGF-β. No previous studies have analyzed the joint actions induced by PGE2 and TGF-β on the function of monocytes or DCs. Here, we analyzed the phenotype and functional profile of monocyte-derived DCs differentiated in the presence of TGF-β and PGE2. DC differentiation guided by TGF-β alone enhanced the expression of CD1a and abrogated LPS-induced expression of IL-10, while differentiation in the presence of PGE2 impaired CD1a expression, preserved CD14 expression, abrogated IL-12 and IL-23 production, stimulated IL-10 production, and promoted the expansion of FoxP3+ regulatory T cells in a mixed lymphocyte reaction. Interestingly, DCs differentiated in the presence of TGF-β and PGE2 showed a phenotype and functional profile closely resembling those induced by PGE2 alone. Finally, we found that PGE2 inhibited TGF-β signaling through an action exerted by EP2 and EP4 receptors coupled to cyclic AMP increase and protein kinase A activity. These results indicate that PGE2 suppresses the influence exerted by TGF-β during DC differentiation, imprinting a tolerogenic signature. High concentrations of TGF-β and PGE2 are usually found in infectious, autoimmune, and neoplastic diseases. Our observations suggest that in these scenarios PGE2 might play a mandatory role in the acquisition of a regulatory profile by DCs.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Automated generation of immature dendritic cells in a single-use system.

In Journal of Immunological Methods on 1 June 2018 by Kozbial, A., Bhandary, L., et al.

Dendritic cells (DCs) are an indispensable part of studying human responses that are important for protective immunity against cancer and infectious diseases as well as prevention of autoimmunity and transplant rejection. These cells are also key elements of personalized vaccines for cancer and infectious diseases. Despite the vital role of DCs in both clinical and basic research contexts, methods for obtaining these cells from individuals remains a comparatively under-developed and inefficient process. DCs are present in very low concentrations (<1%) in blood, thus they must be generated from monocytes and the current methodology in DC generation involves a laborious process of static culture and stimulation with cytokines contained in culture medium. Herein, we describe an automated fluidic system, MicroDEN, that allows for differentiation of monocytes into immature-DCs (iDCs) utilizing continuous perfusion of differentiation media. Manual steps associated with current ex vivo monocyte differentiation are vastly reduced and an aseptic environment is ensured by the use of an enclosed cartridge and tubing network. Benchmark phenotyping was performed on the generated iDCs along with allogeneic T-cell proliferation and syngeneic antigen-specific functional assays. MicroDEN generated iDCs were phenotypically and functionally similar to well plate generated iDCs, thereby demonstrating the feasibility of utilizing MicroDEN in the broad range of applications requiring DCs.
Copyright © 2018 Elsevier B.V. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb