Product Citations: 3

Forced enhancer-promoter rewiring to alter gene expression in animal models.

In Molecular Therapy. Nucleic Acids on 14 March 2023 by Peslak, S. A., Demirci, S., et al.

Transcriptional enhancers can be in physical proximity of their target genes via chromatin looping. The enhancer at the β-globin locus (locus control region [LCR]) contacts the fetal-type (HBG) and adult-type (HBB) β-globin genes during corresponding developmental stages. We have demonstrated previously that forcing proximity between the LCR and HBG genes in cultured adult-stage erythroid cells can activate HBG transcription. Activation of HBG expression in erythroid cells is of benefit to patients with sickle cell disease. Here, using the β-globin locus as a model, we provide proof of concept at the organismal level that forced enhancer rewiring might present a strategy to alter gene expression for therapeutic purposes. Hematopoietic stem and progenitor cells (HSPCs) from mice bearing human β-globin genes were transduced with lentiviral vectors expressing a synthetic transcription factor (ZF-Ldb1) that fosters LCR-HBG contacts. When engrafted into host animals, HSPCs gave rise to adult-type erythroid cells with elevated HBG expression. Vectors containing ZF-Ldb1 were optimized for activity in cultured human and rhesus macaque erythroid cells. Upon transplantation into rhesus macaques, erythroid cells from HSPCs expressing ZF-Ldb1 displayed elevated HBG production. These findings in two animal models suggest that forced redirection of gene-regulatory elements may be used to alter gene expression to treat disease.
© 2023 The Author(s).

  • FC/FACS

Fetal hemoglobin and F-cell variance in mobilized CD34+ cell-transplanted rhesus monkeys.

In Experimental Hematology on 1 July 2019 by Demirci, S., Mora, J. J. H., et al.

Elevated fetal hemoglobin (HbF) is associated with reduced severity of sickle cell disease. Therefore, γ-globin protein levels and F-cell (HbF-positive red blood cell) percentages are used for estimation of clinical benefit. Here, we monitored transplantation-related changes in HbF and F-cell percentages for rhesus macaques (Macaca mulatta) following total body irradiation or busulfan conditioning prior to CD34+ cell transplantation. HbF protein expression peaked in the first 4-9 weeks posttransplant (0.99%-2.53%), and F-cells increased in the first 6-17 weeks posttransplant (8.7%-45.3%). HbF and F-cell ratios gradually decreased and stabilized to levels similar to those of control animals (1.96 ± 1.97% for F cells and 0.49 ± 0.19% γ-globin expression) 4-7 months post-transplant. These findings confirm and expand on previous reports of transient induction in HbF and F-cell percentages in rhesus macaques following CD34+ cell transplantation, an observation that must be taken into consideration when evaluating therapeutic strategies that aim to specifically elevate HbF expression, which are currently in clinical development.
Published by Elsevier Inc.

  • FC/FACS
  • Cardiovascular biology

Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells.

In Nature Immunology on 1 September 2010 by Cardone, J., Le Friec, G., et al.

In this study we demonstrate a new form of immunoregulation: engagement on CD4(+) T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (T(H)1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4(+) T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4(+) T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-gamma (IFN-gamma). Finally, gammadelta T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) gammadelta and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.

  • Immunology and Microbiology
View this product on CiteAb