Product Citations: 6

Increased O-GlcNAcylation of c-Myc Promotes Pre-B Cell Proliferation.

In Cells on 8 January 2020 by Lee, D. H., Kwon, N. E., et al.

O-linked β-N-acetylglucosamine (O-GlcNAc) modification regulates the activity of hundreds of nucleocytoplasmic proteins involved in a wide variety of cellular processes, such as gene expression, signaling, and cell growth; however, the mechanism underlying the regulation of B cell development and function by O-GlcNAcylation remains largely unknown. Here, we demonstrate that changes in cellular O-GlcNAc levels significantly affected the growth of pre-B cells, which rapidly proliferate to allow expansion of functional clones that express successfully rearranged heavy chains at the pro-B stage during early B cell development. In our study, the overall O-GlcNAc levels in these proliferative pre-B cells, which are linked to the glucose uptake rate, were highly induced when compared with those in pro-B cells. Thus, pharmacologically, genetically, or nutritionally, inhibition of O-GlcNAcylation in pre-B cells markedly downregulated c-Myc expression, resulting in cell cycle arrest via blockade of cyclin expression. Importantly, the population of B cells after the pro-B cell stage in mouse bone marrow was severely impaired by the administration of an O-GlcNAc inhibitor. These results strongly suggest that O-GlcNAcylation-dependent expression of c-Myc represents a new regulatory component of pre-B cell proliferation, as well as a potential therapeutic target for the treatment of pre-B cell-derived leukemia.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology

The proliferation of pre-B cells is known to further increase the clonal diversity of B cells at the stage of pre-B cells by allowing the same rearranged heavy chains to combine with differently rearranged light chains in a subsequent developmental stage. Crlz-1 (charged amino acid-rich leucine zipper-1) was found to control this proliferation of pre-B cells by working as a Wnt (wingless-related mouse mammary tumor virus integration site) target gene in these cells. Mechanistically, Crlz-1 protein functioned by mobilizing cytoplasmic CBFβ (core binding factor β) into the nucleus to allow Runx (runt-related transcription factor)/CBFβ heterodimerization. Runx/CBFβ then turned on its target genes such as EBF (early B cell factor), VpreB, and λ5 and thereby pre-B cell receptor signaling, leading to the expression of cyclins D2 and D3 Actually, the proliferative function of Crlz-1 was demonstrated by not only Crlz-1 or β-catenin knockdown but also Crlz-1 overexpression. Furthermore, the mechanistic view that the proliferative function of Crlz-1 is caused by relaying Wnt/β-catenin to pre-B cell receptor signaling pathways through the regulation of Runx/CBFβ heterodimerization was also verified by employing niclosamide, XAV939, and LiCl as Wnt inhibitors and activator, respectively.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation.

In Nature Immunology on 22 January 2012 by Ochiai, K., Maienschein-Cline, M., et al.

The molecular crosstalk between the interleukin 7 receptor (IL-7R) and the precursor to the B cell antigen receptor (pre-BCR) in B lymphopoiesis has not been elucidated. Here we demonstrate that in pre-B cells, the IL-7R but not the pre-BCR was coupled to phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt; signaling by this pathway inhibited expression of recombination-activating gene 1 (Rag1) and Rag2. Attenuation of IL-7 signaling resulted in upregulation of the transcription factors Foxo1 and Pax5, which coactivated many pre-B cell genes, including Rag1, Rag2 and Blnk. Induction of Blnk (which encodes the signaling adaptor BLNK) enabled pre-BCR signaling via the signaling molecule Syk and promoted immunoglobulin light-chain rearrangement. BLNK expression also antagonized Akt activation, thereby augmenting the accumulation of Foxo1 and Pax5. This self-reinforcing molecular circuit seemed to sense limiting concentrations of IL-7 and functioned to constrain the proliferation of pre-B cells and trigger their differentiation.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Essential role of phospholipase C gamma 2 in early B-cell development and Myc-mediated lymphomagenesis.

In Molecular and Cellular Biology on 1 December 2006 by Wen, R., Chen, Y., et al.

Phospholipase Cgamma2 (PLCgamma2) is a critical signaling effector of the B-cell receptor (BCR). Here we show that PLCgamma2 deficiency impedes early B-cell development, resulting in an increase of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B cells. PLCgamma2 deficiency impairs pre-BCR-mediated functions, leading to enhanced interleukin-7 (IL-7) signaling and elevated levels of RAGs in the selected large pre-B cells. Consequently, PLCgamma2 deficiency renders large pre-B cells susceptible to transformation, resulting in dramatic acceleration of Myc-induced lymphomagenesis. PLCgamma2(-/-) Emu-Myc transgenic mice mainly develop lymphomas of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B-cell origin, which are uncommon in wild-type Emu-Myc transgenics. Furthermore, lymphomas from PLCgamma2(-/-) Emu-Myc transgenic mice exhibited a loss of p27Kip1 and often displayed alterations in Arf or p53. Thus, PLCgamma2 plays an important role in pre-BCR-mediated early B-cell development, and its deficiency leads to markedly increased pools of the most at-risk large pre-B cells, which display hyperresponsiveness to IL-7 and express high levels of RAGs, making them prone to secondary mutations and Myc-induced malignancy.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology

The IgJ gene is expressed in the plasma cell stage. However, its neighboring charged amino acid-rich leucine zipper 1 (Crlz1) gene, which is mapped 30 kb upstream of the IgJ gene in mice, is shown to be expressed in the pre-B cell stage. These stage-specific expressions of two neighboring genes are found to be regulated by their chromatin accessibility and acetylation. Hypersensitive site 1 on the IgJ promoter is opened in the plasma cells, whereas hypersensitive sites 9/10 on the Crlz1 promoter are opened in the pre-B cells. Furthermore, H3 and H4 histones toward the chromatin of the Crlz1 gene are found to be hyperacetylated, especially on H3, in the pre-B cells, whereas those toward the chromatin of the IgJ gene are found to be hyperacetylated in the plasma cells. Consistently, the hyperacetylation of H3 and H4 toward the chromatin of the IgJ gene but not the Crlz1 gene is induced by an IL-2 treatment of BCL1, which is a model cell line for studying the terminal differentiation of B cells.

  • Genetics
  • Immunology and Microbiology
View this product on CiteAb