MIWI2, a P element-induced wimpy testes (PIWI) argonaute protein known for suppressing retrotransposons during male gonadogenesis, has an unexplored role in mammalian somatic cells. We identify MIWI2 multiciliated (M2MC) cells as a rare subset of airway multiciliated cells and investigate MIWI2's function in antiviral host defense. We analyzed transcriptomes from Miwi2 heterozygous (Miwi2 +/tom) and deficient (Miwi2 tom/tom) mice following influenza A infection. During infection, Miwi2 deficiency was associated with reduced mitochondrial and ribosomal gene expression in M2MC cells, increased mitochondrial reactive oxygen species (ROS) production and ADP/ATP ratios in multiciliated cells, and enhanced viral clearance and recovery. Additionally, Miwi2-expressing cells exhibited reduced levels of small RNAs derived from nuclear mitochondrial DNA. These findings reveal a previously unrecognized role for Miwi2 in regulating small non-coding RNAs and mitochondrial oxidant production in somatic cells, indicating a function beyond its established germline activities. Our study identifies Miwi2/Piwil4 as a potential factor influencing susceptibility to severe respiratory infections.
© 2025 The Author(s).