Product Citations: 21

Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way.

In mBio on 12 June 2024 by Cao, Z., Wang, J., et al.

Hyperactivation of pro-inflammatory type 1 cytokines (e.g., tumor necrosis factor alpha [TNF-α] and interferon gamma [IFN-γ]) mirrors the inflammation of coronavirus disease 2019. Helminths could alleviate excessive immune responses. Here, helminth Trichinella spiralis (Ts) infection was shown to protect against TNF-α- and IFN-γ-induced shock. Mechanistically, Ts-induced protection was interleukin-9 (IL-9) dependent but not IL-4Rα. Recombinant IL-9 treatment not only improved the survival of wild-type mice with TNF-α- and IFN-γ-induced shock but also that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected K18-human angiotensin-converting enzyme 2 (hACE2) mice, emphasizing the significance of IL-9 in alleviating cytokine storm syndromes during SARS-CoV-2 infection. Interestingly, Ts excretory/secretory (TsES)-induced protection was also observed in SARS-CoV-2 infection, indicating that identifying anti-inflammatory molecules from TsES could be a novel way to mitigate adverse pathological inflammation during pathogen infection.IMPORTANCESevere coronavirus disease 2019 (COVID-19) is linked to cytokine storm triggered by type 1 pro-inflammatory immune responses. TNF-α and IFN-γ shock mirrors cytokine storm syndromes, including COVID-19. Helminths (e.g., Trichinella spiralis, Ts) can potently activate anti-inflammatory type 2 immune response. Here, we found that helminth Ts-induced protection against TNF-α and IFN-γ shock was IL-9 dependent. Treatment with recombinant IL-9 could protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in K18-hACE2 mice. Helminth Ts excretory/secretory (TsES) products also ameliorated SARS-CoV-2 infection-related cytokine storm. In conclusion, our study emphasizes the significance of IL-9 in protecting from cytokine storm syndromes associated with SARS-CoV-2 infection. Anti-inflammatory molecules from TsES could be a new source to mitigate adverse pathological inflammation associated with infections, including COVID-19.

  • Mus musculus (House mouse)
  • COVID-19

Type 2 innate lymphoid cells are not involved in mouse bladder tumor development.

In Frontiers in Immunology on 29 January 2024 by Schneider, A. K., Domingos-Pereira, S., et al.

Therapies for bladder cancer patients are limited by side effects and failures, highlighting the need for novel targets to improve disease management. Given the emerging evidence highlighting the key role of innate lymphoid cell subsets, especially type 2 innate lymphoid cells (ILC2s), in shaping the tumor microenvironment and immune responses, we investigated the contribution of ILC2s in bladder tumor development. Using the orthotopic murine MB49 bladder tumor model, we found a strong enrichment of ILC2s in the bladder under steady-state conditions, comparable to that in the lung. However, as tumors grew, we observed an increase in ILC1s but no changes in ILC2s. Targeting ILC2s by blocking IL-4/IL-13 signaling pathways, IL-5, or IL-33 receptor, or using IL-33-deficient or ILC2-deficient mice, did not affect mice survival following bladder tumor implantation. Overall, these results suggest that ILC2s do not contribute significantly to bladder tumor development, yet further investigations are required to confirm these results in bladder cancer patients.
Copyright © 2024 Schneider, Domingos-Pereira, Cesson, Polak, Fallon, Zhu, Roth, Nardelli-Haefliger and Derré.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

The ubiquitin ligase Cul5 regulates CD4+ T cell fate choice and allergic inflammation.

In Nature Communications on 19 May 2022 by Kumar, B., Field, N. S., et al.

Antigen encounter directs CD4+ T cells to differentiate into T helper or regulatory cells. This process focuses the immune response on the invading pathogen and limits tissue damage. Mechanisms that govern T helper cell versus T regulatory cell fate remain poorly understood. Here, we show that the E3 ubiquitin ligase Cul5 determines fate selection in CD4+ T cells by regulating IL-4 receptor signaling. Mice lacking Cul5 in T cells develop Th2 and Th9 inflammation and show pathophysiological features of atopic asthma. Following T cell activation, Cul5 forms a complex with CIS and pJak1. Cul5 deletion reduces ubiquitination and subsequent degradation of pJak1, leading to an increase in pJak1 and pSTAT6 levels and reducing the threshold of IL-4 receptor signaling. As a consequence, Cul5 deficient CD4+ T cells deviate from Treg to Th9 differentiation in low IL-4 conditions. These data support the notion that Cul5 promotes a tolerogenic T cell fate choice and reduces susceptibility to allergic asthma.
© 2022. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Interleukin-4 Receptor Inhibition Targeting Metastasis Independent of Macrophages.

In Molecular Cancer Therapeutics on 1 May 2021 by Cleary, M. M., Bharathy, N., et al.

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma occurring in children and carries a dismal prognosis when metastatic disease is detected. Our previous work has suggested the cytokine receptor IL4Rα may play a role in contributing to metastasis in the alveolar subtype of rhabdomyosarcoma (aRMS), and thus could present a therapeutic target. The IL4 signaling axis has been characterized in various adult cancers as well; however, pediatric trials often follow similar adult trials and the role of the IL4Rα receptor has not been explored in the context of a mediator of metastasis in adult disease. Here, we demonstrate that the impact of IL4Rα blockade in an orthotopic allograft model of aRMS is not mediated by a macrophage response. We further examine the effect of IL4 blockade in adult colon, breast, and prostate cancers and find that inhibition of IL4Rα signaling modulates in vitro cell viability of HCT-116 colon carcinoma cells; however, this finding did not translate to an autocrine-related in vivo difference in tumor burden or lung metastasis. Our results suggest that if humanized IL4 mouse host strains are not available (or not ideal due to the need for immunosuppressing the host innate immune response for xenograft systems), then genetically-engineered mice and mouse allograft studies may be the best indicator of therapeutic targeting efficacy.
©2021 American Association for Cancer Research.

  • Cancer Research

Impaired tolerance to innocuous particles during allergic asthma has been linked to increased plasticity of FoxP3+ regulatory T cells (Tregs) reprogramming into pathogenic effector cells, thus exacerbating airway disease. However, failure of tolerance mechanisms is driven by Th2 inflammatory signals. Therefore, the in vivo role of canonical IL-4 receptor α (IL-4Rα) signaling, an essential driver of Th2-type airway responses to allergens, on the regulatory function of FoxP3+ Tregs in allergic asthma was explored. Here, we used transgenic Foxp3cre IL-4Rα-/lox and littermate control mice to investigate the role of IL-4 and IL-13 signaling via Tregs in house dust mite-induced (HDM-induced) allergic airway disease. We sensitized mice intratracheally on day 0, challenged them on days 6-10, and analyzed airway hyperresponsiveness (AHR), airway inflammation, mucus production, and cellular profile on day 14. In the absence of IL-4Rα responsiveness on FoxP3+ Tregs, exacerbated AHR and airway inflammation were shown in HDM-sensitized mice. Interestingly, reduced induction of FoxP3+ Tregs accompanied increased IL-33 alarmin production and type 2 innate lymphoid cell activation in the lung, exacerbating airway hyperreactivity and lung eosinophilia. Taken together, our findings indicate that IL-4Rα-unresponsive FoxP3+ Tregs result in exaggerated innate Th2-type, IL-33-dependent airway inflammation and a break in tolerance during allergic asthma.

  • Immunology and Microbiology
View this product on CiteAb