Product Citations: 59

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs. However, during human gestation HSPCs arise in the aorta considerably earlier than when they can first be detected in the placenta, suggesting that the placenta may primarily serve as a niche. We found that the Runx1 transcription factor, which is required to generate HSPCs from HECs, is not expressed by mouse placental ECs. To definitively determine whether the mouse placenta is a site of HSPC emergence, we performed lineage tracing experiments with a Hoxa13Cre allele that specifically labels ECs in the placenta and umbilical cord (UC), but not in the yolk sac or embryo. Immunostaining revealed Hoxa13Cre lineage-traced HECs and HSPCs in the UC, a known site of HECs, but not the placenta. Consistent with these findings, ECs harvested from the E10.5 aorta and UC, but not the placenta, gave rise to hematopoietic cells ex vivo, while colony forming assays using E14.5 fetal liver revealed only 2% of HSPCs arose from Hoxa13-expressing precursors. In contrast, the pan-EC Cdh5-CreERT2 allele labeled most HSPCs in the mouse placenta. Lastly, we found that RUNX1 and other HEC genes were not expressed in first-trimester human placenta villous ECs, suggesting that human placenta is not hemogenic. Our findings demonstrate that the placenta functions as a site for expansion of HSPCs that arise within the embryo proper and is not a primary site of HSPC emergence.
Copyright: © 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • Stem Cells and Developmental Biology

Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) resolve acute inflammation and repair the injured lung after viral pneumonia. Vimentin is a critical protein in the distal pole complex (DPC) of Tregs. This study reveals the inhibitory effect of vimentin on the suppressive and reparative capacity of Tregs. Treg-specific deletion of vimentin increases Helios+interleukin-18 receptor (IL-18R)+ Tregs, suppresses inflammatory immune cells, and enhances tissue repair, protecting Vimfl/flFoxp3YFP-cre mice from influenza-induced lung injury and mortality. Mechanistically, vimentin suppresses the induction of amphiregulin, an epidermal growth factor receptor (EGFR) ligand necessary for tissue repair, by sequestering IL-18R to the DPC and restricting receptor-ligand interactions. We propose that vimentin in the DPC of Tregs functions as a molecular switch, which could be targeted to regulate the immune response and enhance tissue repair in patients with severe viral pneumonia.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Lupus nephritis (LN), a severe complication of systemic lupus erythematosus (SLE), exhibits significant heterogeneity. Recent evidence suggests that non-immune factors contribute to end-organ damage, challenging the traditional view of LN solely arising from immune dysregulation. To investigate this, we employed autoimmune-prone Gnaq +/- mice receiving intraperitoneal pristane injections. Bone marrow transfer (BMT) distinguished the roles of immune versus non-immune cells. We observed that: (1) BMT from wild-type (WT) mice to Gnaq +/- recipients resulted in severe proteinuria and diffuse proliferative nephritis after pristane exposure; (2) GNAQ knockdown increased the expression of IFI16/Ifi202b and activated the NF-κB pathway in endothelial cells; and (3) increased IFI16 expression in human kidney biopsies correlated with proliferative LN. Taken together, these findings suggest that GNAQ acts as an inflammatory regulator in kidney endothelial cells via the IFI16/NF-κB pathway, potentially linking it to the development of LN in humans.
© 2024 The Authors.

  • Mus musculus (House mouse)
  • Pathology

Genetic and structural studies of RABL3 reveal an essential role in lymphoid development and function.

In Proceedings of the National Academy of Sciences of the United States of America on 14 April 2020 by Zhong, X., Su, L., et al.

The small GTPase RABL3 is an oncogene of unknown physiological function. Homozygous knockout alleles of mouse Rabl3 were embryonic lethal, but a viable hypomorphic allele (xiamen [xm]) causing in-frame deletion of four amino acids from the interswitch region resulted in profound defects in lymphopoiesis. Impaired lymphoid progenitor development led to deficiencies of B cells, T cells, and natural killer (NK) cells in Rabl3xm/xm mice. T cells and NK cells exhibited impaired cytolytic activity, and mice infected with mouse cytomegalovirus (MCMV) displayed elevated titers in the spleen. Myeloid cells were normal in number and function. Biophysical and crystallographic studies demonstrated that RABL3 formed a homodimer in solution via interactions between the effector binding surfaces on each subunit; monomers adopted a typical small G protein fold. RABL3xm displayed a large compensatory alteration in switch I, which adopted a β-strand configuration normally provided by the deleted interswitch residues, thereby permitting homodimer formation. Dysregulated effector binding due to conformational changes in the switch I-interswitch-switch II module likely underlies the xm phenotype. One such effector may be GPR89, putatively an ion channel or G protein-coupled receptor (GPCR). RABL3, but not RABL3xm, strongly associated with and stabilized GPR89, and an N-ethyl-N-nitrosourea (ENU)-induced mutation (explorer) in Gpr89 phenocopied Rabl3xm.

  • Genetics

Morphologic and Immunohistochemical Characterization of Spontaneous Lymphoma/Leukemia in NSG Mice.

In Veterinary Pathology on 1 January 2020 by Tillman, H., Janke, L. J., et al.

The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ strain (NOD scid gamma, NSG) is a severely immunodeficient inbred laboratory mouse used for preclinical studies because it is amenable to engraftment with human cells. Combining scid and Il2rgnull mutations results in severe immunodeficiency by impairing the maturation, survival, and functionality of interleukin 2-dependent immune cells, including T, B, and natural killer lymphocytes. While NSG mice are reportedly resistant to developing spontaneous lymphomas/leukemias, there are reports of hematopoietic cancers developing. In this study, we characterized the immunophenotype of spontaneous lymphoma/leukemia in 12 NSG mice (20 to 38 weeks old). The mice had a combination of grossly enlarged thymus, spleen, or lymph nodes and variable histologic involvement of the bone marrow and other tissues. All 12 lymphomas were diffusely CD3, TDT, and CD4 positive, and 11 of 12 were also positive for CD8, which together was consistent with precursor T-cell lymphoblastic lymphoma/leukemia (pre-T-LBL). A subset of NSG tissues from all mice and neoplastic lymphocytes from 8 of 12 cases had strong immunoreactivity for retroviral p30 core protein, suggesting an association with a viral infection. These data highlight that NSG mice may develop T-cell lymphoma at low frequency, necessitating the recognition of this spontaneously arising disease when interpreting studies.

  • Mus musculus (House mouse)
  • Cancer Research
  • Veterinary Research
View this product on CiteAb