Product Citations: 18

Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA. Peripheral B cells were depleted following anti-CD20 infusions and remained depleted for at least 9 weeks after the 1st anti-CD20 infusion. Plasma viremia dropped by more than 100-fold in viremic animals after the initial bNAb treatment. No significant humoral ADA responses were detected for as long as B cells remained depleted. Our results indicate that transient B cell depletion successfully inhibited emergence of ADA and improved the assessment of anti-viral efficacy of a bNAb in a SHIV-infected rhesus macaque model.

  • FC/FACS
  • Immunology and Microbiology

Innate cell markers that predict anti-HIV neutralizing antibody titers in vaccinated macaques.

In Cell Reports Medicine on 18 October 2022 by Van Tilbeurgh, M., Maisonnasse, P., et al.

Given the time and resources invested in clinical trials, innovative prediction methods are needed to decrease late-stage failure in vaccine development. We identify combinations of early innate responses that predict neutralizing antibody (nAb) responses induced in HIV-Env SOSIP immunized cynomolgus macaques using various routes of vaccine injection and adjuvants. We analyze blood myeloid cells before and 24 h after each immunization by mass cytometry using a three-step clustering, and we discriminate unique vaccine signatures based on HLA-DR, CD39, CD86, CD11b, CD45, CD64, CD14, CD32, CD11c, CD123, CD4, CD16, and CADM1 surface expression. Various combinations of these markers characterize cell families positively associated with nAb production, whereas CADM1-expressing cells are negatively associated (p < 0.05). Our results demonstrate that monitoring immune signatures during early vaccine development could assist in identifying biomarkers that predict vaccine immunogenicity.Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.
© 2022. The Author(s).

  • Immunology and Microbiology

Intracellular RNase activity dampens zinc finger nuclease-mediated gene editing in hematopoietic stem and progenitor cells.

In Molecular Therapy. Methods Clinical Development on 10 March 2022 by Peterson, C. W., Venkataraman, R., et al.

Over the past decade, numerous gene-editing platforms which alter host DNA in a highly specific and targeted fashion have been described. Two notable examples are zinc finger nucleases (ZFNs), the first gene-editing platform to be tested in clinical trials, and more recently, CRISPR/Cas9. Although CRISPR/Cas9 approaches have become arguably the most popular platform in the field, the therapeutic advantages and disadvantages of each strategy are only beginning to emerge. We have established a nonhuman primate (NHP) model that serves as a strong predictor of successful gene therapy and gene-editing approaches in humans; our recent work shows that ZFN-edited hematopoietic stem and progenitor cells (HSPCs) engraft at lower levels than CRISPR/Cas9-edited cells. Here, we investigate the mechanisms underlying this difference. We show that optimized culture conditions, including defined serum-free media, augment engraftment of gene-edited NHP HSPCs in a mouse xenograft model. Furthermore, we identify intracellular RNases as major barriers for mRNA-encoded nucleases relative to preformed enzymatically active CRISPR/Cas9 ribonucleoprotein (RNP) complexes. We conclude that CRISPR/Cas9 RNP gene editing is more stable and efficient than ZFN mRNA-based delivery and identify co-delivered RNase inhibitors as a strategy to enhance the expression of gene-editing proteins from mRNA intermediates.
© 2021.

The obesity epidemic significantly contributes to overall morbidity and mortality. Bariatric surgery is the gold standard treatment for obesity and metabolic dysfunction, yet the mechanisms by which it exerts metabolic benefit remain unclear. Here, we demonstrate a model of vertical sleeve gastrectomy (VSG) in nonhuman primates (NHP) that mimics the complexity and outcomes in humans. We also show that VSG confers weight loss and durable metabolic benefit, where equivalent caloric intake in shams resulted in significant weight gain following surgery. Furthermore, we show that VSG is associated with early, weight-independent increases in bile acids, short-chain fatty acids, and reduced visceral adipose tissue (VAT) inflammation with a polarization of VAT-resident immunocytes toward highly regulatory myeloid cells and Tregs. These data demonstrate that this strongly translational NHP model can be used to interrogate factors driving successful intervention to unravel the interplay between physiologic systems and improve therapies for obesity and metabolic syndrome.© 2021 The Author(s).

  • Biochemistry and Molecular biology
View this product on CiteAb