Product Citations: 8

Downstream interferon signaling through the type I interferon (IFN) receptor, IFNAR, is crucial for the proper production of type I IFNs in mounting anti-tumor immune responses. Our study investigates the role of type I IFN signaling in the glioblastoma (GBM) tumor microenvironment by leveraging single-cell RNA sequencing to analyze tumor-infiltrating lymphocytes. We investigate how type I IFN signaling within the myeloid compartment contributes to the crosstalk with T cells in the tumor microenvironment. Through the use of the Gl261 murine GBM model, we find that the lack of proper type I IFN response results in enhanced PD-L1 interactions among myeloid cells, thereby affecting T cell functionality. Additionally, we also characterize how anti-PD1 treatment induces transcriptional changes in tumor-associated monocytes and macrophages by analyzing intercellular communication networks and propose how immune checkpoint blockade therapy could possibly relieve some of the immunosuppression derived from the lack of proper type I IFN production.
© 2024 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Cardiac resident MerTK+ macrophages exert multiple protective roles after ischemic injury; however, the mechanisms regulating their fate are not fully understood. In the present study, we show that the GAS6-inducible transcription factor, activating transcription factor 3 (ATF3), prevents apoptosis of MerTK+ macrophages after ischemia-reperfusion (IR) injury by repressing the transcription of multiple genes involved in type I interferon expression (Ifih1 and Ifnb1) and apoptosis (Apaf1). Mice lacking ATF3 in cardiac macrophages or myeloid cells showed excessive loss of MerTK+ cardiac macrophages, poor angiogenesis and worse heart dysfunction after IR, which were rescued by the transfer of MerTK+ cardiac macrophages. GAS6 administration improved cardiac repair in an ATF3-dependent manner. Finally, we showed a negative association of GAS6 and ATF3 expression with the risk of major adverse cardiac events in patients with ischemic heart disease. These results indicate that the GAS6-ATF3 axis has a protective role against IR injury by regulating MerTK+ cardiac macrophage survival and/or proliferation.
© 2024. The Author(s).

  • Cardiovascular biology

Fibrosis is a prominent pathological feature of skeletal muscle in Duchenne muscular dystrophy (DMD). The commonly used disease mouse model, mdx 5cv , displays progressive fibrosis in the diaphragm but not limb muscles. We use single-cell RNA sequencing to determine the cellular expression of the genes involved in extracellular matrix (ECM) production and degradation in the mdx 5cv diaphragm and quadriceps. We find that fibro/adipogenic progenitors (FAPs) are not only the primary source of ECM but also the predominant cells that express important ECM regulatory genes, including Ccn2, Ltbp4, Mmp2, Mmp14, Timp1, Timp2, and Loxs. The effector and regulatory functions are exerted by diverse FAP clusters which are different between diaphragm and quadriceps, indicating their activation by different tissue microenvironments. FAPs are more abundant in diaphragm than in quadriceps. Our findings suggest that the development of anti-fibrotic therapy for DMD should target not only the ECM production but also the pro-fibrogenic regulatory functions of FAPs.
© 2022 The Author(s).

  • Mus musculus (House mouse)

Maternal Obesity in Mice Exacerbates the Allergic Inflammatory Response in the Airways of Male Offspring.

In Nutrients on 1 December 2019 by E-Lacerda, R. R., Teixeira, C. J., et al.

: It was previously demonstrated that non-allergen-sensitized rodents born to mothers exposed to a high-fat diet (HFD) spontaneously develop lower respiratory compliance and higher respiratory resistance. In the present study, we sought to determine if mice born to mothers consuming HFD would exhibit changes in inflammatory response and lung remodeling when subjected to ovalbumin (OVA) sensitization/challenge in adult life. Mice born to dams consuming either HFD or standard chow had increased bronchoalveolar lavage (BAL) levels of IL-1β, IL-4, IL-5, IL-10, IL-13, TNF-α and TGF-β1 after challenge with OVA. IL-4, IL-13, TNF-α and TGF-β1 levels were further increased in the offspring of HFD-fed mothers. Mice born to obese dams also had exacerbated values of leukocyte infiltration in lung parenchyma, eosinophil and neutrophil counts in BAL, mucus overproduction and collagen deposition. The programming induced by maternal obesity was accompanied by increased expression of miR-155 in peripheral-blood mononuclear cells and reduced miR-133b in trachea and lung tissue in adult life. Altogether, the present data support the unprecedented notion that the progeny of obese mice display exacerbated responses to sensitization/challenge with OVA, leading to the intensification of the morphological changes of lung remodeling. Such changes are likely to result from long-lasting changes in miR-155 and miR-133b expression.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Current therapy for rheumatoid arthritis (RA) relies on global suppression of the immune response or specific blockade of inflammatory cytokines. However, it is unclear how immunosuppressants affect patients with cancer. Therefore, in the present study, the effect of three biological agents, tofacitinib, anti-mouse IL-6 receptor antibody (MR16-1) and etanercept, which are used for the treatment of RA diseases, on a tumor-bearing mouse model was investigated. The effect of the three agents was examined using a mouse lung-metastasis model with the murine colon 26 cancer cell line. Lymphocyte subsets and natural killer (NK) cells in peripheral blood and spleen were analyzed using fluorescence-activated cell sorting, and the number of lung surface nodules was examined. In the continuous tofacitinib administration (15 mg/kg/day) group, the number of lung surface nodules was significantly increased compared with that of the vehicle-treated group (vehicle, 1.20±0.58; tofacitinib, 35.6±10.81; P<0.01). NK cell number in the blood and spleen of tofacitinib-treated mice was decreased 10-fold, and the percentage of cluster of differentiation (CD)11+CD27- NK cells was significantly reduced. MR16-1 [8 mg/mouse; once a week; intraperitoneal (i.p.)] or etanercept (1 mg/mouse; 3 times a week; i.p.) treatment did not affect the number of NK cells or lung metastasis. In the present study, immunosuppressants that target cytokines, including tofacitinib, were demonstrated to inhibit the proliferation and differentiation of NK cells, and exhibit the potential to promote cancer metastasis using a mouse model of lung metastasis.

  • Cancer Research
View this product on CiteAb