Product Citations: 24

Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction

Preprint on MedRxiv : the Preprint Server for Health Sciences on 11 December 2021 by Rouhani, S. J., Trujillo, J. A., et al.

The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.

  • COVID-19
  • Immunology and Microbiology

A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals.

In Nature Immunology on 1 October 2020 by Demetriou, P., Abu-Shah, E., et al.

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.

  • Immunology and Microbiology
  • Neuroscience

Exploration of T-Cell Diversity Using Mass Cytometry.

In Methods in Molecular Biology (Clifton, N.J.) on 15 January 2020 by O'Boyle, K. C., Ohtani, T., et al.

T-cell diversity is multifactorial and includes variability in antigen specificity, differentiation, function, and cell-trafficking potential. Spectral overlap limits the ability of traditional flow cytometry to fully capture the diversity of T-cell subsets and function. The development of mass cytometry permits deep immunoprofiling of T-cell subsets, activation state, and function simultaneously from even small volumes of blood. This chapter describes our methods for mass cytometry and high-throughput data analysis of T cells in patient cohorts. We provide a pipeline that includes practical considerations when customizing a panel for mass cytometry. We also provide protocols for the conjugation and titration of metal-labeled antibodies (including two T-cell panels) and a staining procedure. Finally, with the aim to support translational science, we provide R scripts that contain a detailed workflow for initial evaluation of high-dimensional data generated from cohorts of patients.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Pregnancy-related immune suppression leads to altered influenza vaccine recall responses.

In Clinical Immunology (Orlando, Fla.) on 1 November 2019 by Shah, N. M., Imami, N., et al.

Pregnancy is a risk factor for severe influenza infection. Despite achieving seroprotective antibody titres post immunisation fewer pregnant women experience a reduction in influenza-like illness compared to non-pregnant cohorts. This may be due to the effects that immune-modulation in pregnancy has on vaccine efficacy leading to a less favourable immunologic response. To understand this, we investigated the antigen-specific cellular responses and leukocyte phenotype in pregnant and non-pregnant women who achieved seroprotection post immunisation. We show that pregnancy is associated with better antigen-specific inflammatory (IFN-γ) responses and an expansion of central memory T cells (Tcm) post immunisation, but low-level pregnancy-related immune regulation (HLA-G, PIBF) and associated reduced B-cell antibody maintenance (TGF-β) suggest poor immunologic responses compared to the non-pregnant. Thus far, studies of influenza vaccine immunogenicity have focused on the induction of antibodies but understanding additional vaccine-related cellular responses is needed to fully appreciate how pregnancy impacts on vaccine effectiveness.
Copyright © 2019 Elsevier Inc. All rights reserved.

  • Endocrinology and Physiology
  • Immunology and Microbiology

Preliminary assessment of the feasibility of autologous myeloid-derived suppressor cell infusion in non-human primate kidney transplantation.

In Transplant Immunology on 1 October 2019 by Ezzelarab, M. B., Pérez-Gutiérrez, A., et al.

Myeloid-derived suppressor cells (MDSC) are a heterogenous population of immunosuppressive myeloid cells now considered important immune regulatory cells in diverse clinical conditions, including cancer, chronic inflammatory disorders and transplantation. In rodents, MDSC administration can inhibit graft-versus-host disease lethality and enhance organ or pancreatic islet allograft survival. There is also evidence, however, that under systemic inflammatory conditions, adoptively-transferred MDSC can rapidly lose their suppressive function. To our knowledge, there are no reports of autologous MDSC administration to either human or clinically-relevant non-human primate (NHP) transplant recipients. Monocytic (m) MDSC have been shown to be more potent suppressors of T cell responses than other subsets of MDSC. Following their characterization in rhesus macaques, we have conducted a preliminary analysis of the feasibility and preliminary efficacy of purified mMDSC infusion into MHC-mismatched rhesus kidney allograft recipients. The graft recipients were treated with rapamycin and the high affinity variant of the T cell co-stimulation blocking agent cytotoxic T lymphocyte antigen 4 Ig (Belatacept) that targets the B7-CD28 pathway. Graft survival and histology were not affected by infusions of autologous, leukapheresis product-derived mMDSC on days 7 and 14 post-transplant (cumulative totals of 3.19 and 1.98 × 106 cells/kg in n = 2 recipients) compared with control monkeys that did not receive MDSC (n = 2). Sequential analyses of effector T cell populations revealed no differences between the groups. While these initial findings do not provide evidence of efficacy under the conditions adopted, further studies in NHP, designed to ascertain the appropriate mMDSC source and dose, timing and anti-inflammatory/immunosuppressive agent support are likely to prove instructive regarding the therapeutic potential of MDSC in organ transplantation.
Copyright © 2019 Elsevier B.V. All rights reserved.

View this product on CiteAb