Product Citations: 5

Seasonal influenza vaccines must be updated annually and suboptimally protect against strains mismatched to the selected vaccine strains. We previously developed a subunit vaccine antigen consisting of a stabilized trimeric influenza A group 1 hemagglutinin (H1) stem protein that elicits broadly neutralizing antibodies. Here, we further optimized the stability and manufacturability of the H1 stem antigen (H1 stem v2, also known as INFLUENZA G1 mHA) and characterized its formulation and potency with different adjuvants in vitro and in animal models. The recombinant H1 stem antigen (50 µg) was administered to influenza-naïve non-human primates either with aluminum hydroxide [Al(OH)3] + NaCl, AS01B, or SLA-LSQ formulations at week 0, 8 and 34. These SLA-LSQ formulations comprised of varying ratios of the synthetic TLR4 agonist 'second generation synthetic lipid adjuvant' (SLA) with liposomal QS-21 (LSQ). A vaccine formulation with aluminum hydroxide or SLA-LSQ (starting at a 10:25 µg ratio) induced HA-specific antibodies and breadth of neutralization against a panel of influenza A group 1 pseudoviruses, comparable with vaccine formulated with AS01B, four weeks after the second immunization. A formulation with SLA-LSQ in a 5:2 μg ratio contained larger fused or aggregated liposomes and induced significantly lower humoral responses. Broadly HA stem-binding antibodies were detectable for the entire period after the second vaccine dose up to week 34, after which they were boosted by a third vaccine dose. These findings inform about potential adjuvant formulations in clinical trials with an H1 stem-based vaccine candidate.
© 2023. The Author(s).

  • Immunology and Microbiology

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.
Copyright © 2022 Pesce, Manfrini, Cordiglieri, Santi, Bandera, Gobbini, Gruarin, Favalli, Bombaci, Cuomo, Collino, Cricrì, Ungaro, Lombardi, Mangioni, Muscatello, Aliberti, Blasi, Gori, Abrignani, De Francesco, Biffo and Grifantini.

  • COVID-19
  • Immunology and Microbiology

HIV infection predisposes latent tuberculosis-infected (LTBI) subjects to active TB. This study is designed to determine whether HIV infection of LTBI subjects compromises the balanced Mycobacterium tuberculosis (Mtb)-specific T helper 17 (Th17) response of recognized importance in anti-TB immunity. Comparative analysis of Mtb- and cytomegalovirus (CMV)-specific CD4+ T cell responses demonstrates a marked dampening of the Mtb-specific CD4+ T cell effectors and polyfunctional cells while preserving CMV-specific response. Additionally, HIV skews the Mtb-specific Th17 response in chronic HIV-infected LTBI progressors, but not long-term non-progressors (LTNPs), with preservation of pro-inflammatory interferon (IFN)-γ+/interleukin-17+ (IL-17+) and significant loss of anti-inflammatory IL-10+/IL-17+ effectors that is restored by anti-retroviral therapy (ART). HIV-driven impairment of Mtb-specific response cannot be attributed to preferential infection as cell-associated HIV DNA and HIV RNA reveal equivalent viral burden in CD4+ T cells from different antigen specificities. We therefore propose that beyond HIV-induced loss of Mtb-specific CD4+ T cells, the associated dysregulation of Mtb-specific T cell homeostasis can potentially enhance the onset of TB in LTBI subjects.
Copyright © 2020. Published by Elsevier Inc.

  • Immunology and Microbiology

To augment HIV-1 pox-protein vaccine immunogenicity using a next generation adjuvant, a prime-boost strategy of recombinant modified vaccinia virus Ankara and multimeric Env gp145 was evaluated in macaques with either aluminum (alum) or a novel liposomal monophosphoryl lipid A (MPLA) formulation adsorbed to alum, ALFA. Binding antibody responses were robust and comparable between arms, while antibody-dependent neutrophil and monocyte phagocytotic responses were greatly enhanced by ALFA. Per-exposure vaccine efficacy against heterologous tier 2 SHIV mucosal challenge was 90% in ALFA-adjuvanted males (P = 0.002), while alum conferred no protection. Half of the ALFA-adjuvanted males remained uninfected after the full challenge series, which spanned seven months after the last vaccination. Antibody-dependent monocyte and neutrophil phagocytic responses both strongly correlated with protection. Significant sex differences in infection risk were observed, with much lower infection rates in females than males. In humans, MPLA-liposome-alum adjuvanted gp120 also increased HIV-1-specific phagocytic responses relative to alum. Thus, next-generation liposome-based adjuvants can drive vaccine elicited antibody effector activity towards potent phagocytic responses in both macaques and humans and these responses correlate with protection. Future protein vaccination strategies aiming to improve functional humoral responses may benefit from such adjuvants.

  • Immunology and Microbiology

Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations.

In NPJ Vaccines on 31 December 2019 by Salisch, N. C., Izquierdo Gil, A., et al.

Respiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.
© The Author(s) 2019.

  • FC/FACS
  • Immunology and Microbiology
View this product on CiteAb