Product Citations: 17

Tertiary lymphoid tissues (TLTs) are ectopic lymphoid structures induced by multiple stimuli, including infection and tissue injuries; however, their clinical relevance in disease progression has remained unclear. We demonstrated previously that TLTs develop in mouse and human kidneys with aging and can be a potential marker of kidney injury and prognosis, and therapeutic targets. In addition, we found that two types of unique lymphocytes that emerge with aging, senescence-associated T cells and age-associated B cells, are essential for TLT formation in the kidney. Although TLTs develop with aging in other organs as well, their cellular and molecular components, and clinical significance remain unclear. In the present study, we found that TLTs developed in the liver with aging, and that their cellular and molecular components were similar to those in the kidneys. Notably, senescence-associated T cells and age-associated B cells were also present in hepatic TLTs. Furthermore, analysis of publicly available data on human liver biopsy transcriptomes revealed that the expression of TLT-related genes was elevated in the liver biopsy samples from hepatitis C virus (HCV)-infected patients compared with those without HCV infection and was associated with liver injury and fibrosis. Therefore, we analyzed liver biopsy samples from 47 HCV patients and found that TLTs were present in 87.2% of cases and that the numbers and stages of TLTs were higher in aged patients and cellular and molecular components of TLTs in humans were similar to those in mice. Our findings suggesting that age-dependent TLT formation is a systemic phenomenon across the tissues and aging is also a predisposing factor for TLT formation across organs.
Copyright: © 2025 Toriu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • IHC-IF
  • Mus musculus (House mouse)

CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells.

In Cellular Molecular Immunology on 1 December 2024 by Wang, Y., Rambold, U., et al.

Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

PTEN acts as a crucial inflammatory checkpoint controlling TLR9/IL-6 axis in B cells.

In IScience on 19 July 2024 by Tsai, P. J., Chen, M. Y., et al.

Phosphatase and tensin homolog (PTEN) is vital for B cell development, acting as a key negative regulator in the PI3K signaling pathway. We used CD23-cre to generate PTEN-conditional knockout mice (CD23-cKO) to examine the impact of PTEN mutation on peripheral B cells. Unlike mb1-cre-mediated PTEN deletion in early B cells, CD23-cKO mutants exhibited systemic inflammation with increased IL-6 production in mature B cells upon CpG stimulation. Inflammatory B cells in CD23-cKO mice showed elevated phosphatidylinositol 3-phosphate [PI(3)P] levels and increased TLR9 endosomal localization. Pharmacological inhibition of PI(3)P synthesis markedly reduced TLR9-mediated IL-6. Single-cell RNA-sequencing (RNA-seq) revealed altered endocytosis, BANK1, and NF-κB1 expression in PTEN-deficient B cells. Ectopic B cell receptor (BCR) expression on non-inflammatory mb1-cKO B cells restored BANK1 and NF-κB1 expression, enhancing TLR9-mediated IL-6 production. Our study highlights PTEN as a crucial inflammatory checkpoint, regulating TLR9/IL-6 axis by fine-tuning PI(3)P homeostasis. Additionally, BCR downregulation prevents the differentiation of inflammatory B cells in PTEN deficiency.
© 2024 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Impaired proteasome activity due to genetic variants of certain subunits might lead to proteasome-associated autoinflammatory syndromes (PRAAS). Here we report a de novo heterozygous missense variant of the PSMB9 proteasome subunit gene in two unrelated Japanese infants resulting in amino acid substitution of the glycine (G) by aspartic acid (D) at position 156 of the encoded protein β1i. In addition to PRAAS-like manifestations, these individuals suffer from pulmonary hypertension and immunodeficiency, which are distinct from typical PRAAS symptoms. The missense variant results in impaired immunoproteasome maturation and activity, yet ubiquitin accumulation is hardly detectable in the patients. A mouse model of the heterozygous human genetic variant (Psmb9G156D/+) recapitulates the proteasome defects and the immunodeficiency phenotype of patients. Structurally, PSMB9 G156D interferes with the β-ring-βring interaction of the wild type protein that is necessary for 20S proteasome formation. We propose the term, proteasome-associated autoinflammatory syndrome with immunodeficiency (PRAAS-ID), to indicate a separate category of autoinflammatory diseases, similar to, but distinct from PRAAS, that describes the patients in this study.
© 2021. The Author(s).

  • Immunology and Microbiology

Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance.

In International Journal of Molecular Sciences on 25 January 2020 by Chang, W. F., Xu, J., et al.

The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance.

  • FC/FACS
  • Mus musculus (House mouse)
  • Neuroscience
View this product on CiteAb