Product Citations: 7

Phosphorylation of DNA-PKcs at the S2056 cluster ensures efficient and productive lymphocyte development in XLF-deficient mice.

In Proceedings of the National Academy of Sciences of the United States of America on 20 June 2023 by Zhu, Y., Jiang, W., et al.

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.

  • FC/FACS
  • Mus musculus (House mouse)
  • Genetics

Soluble CTLA-4 mainly produced by Treg cells inhibits type 1 inflammation without hindering type 2 immunity to allow for inflammation resolution

Preprint on BioRxiv : the Preprint Server for Biology on 26 May 2023 by Osaki, M. & Sakaguchi, S.

CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms. Here, we show that effector-type regulatory T cells (Tregs) are main sCTLA-4 producers in basal and inflammatory states with distinct kinetics upon TCR stimulation. Mice specifically deficient in sCTLA-4 production exhibited spontaneous activation of Th1, Th17, Tfh, and Tc1 cells, autoantibody and IgE production, M1-like macrophage polarization, and impaired wound healing. In contrast, sCTLA-4-intact mCTLA-4-deficient mice, when compared with double-deficient mice, developed milder systemic inflammation and showed predominant activation/differentiation of Th2, M2-like macrophages, and eosinophils. Consistently, recombinant sCTLA-4 inhibited in vitro differentiation of naïve T cells towards Th1 through CD80/CD86 blockade on antigen-presenting cells, but did not affect Th2 differentiation. Moreover, sCTLA-4-intact mCTLA-4-deficient Tregs effectively suppressed Th1-mediated experimental colitis whereas double-deficient Tregs did not. Thus, sCTLA-4 production by Tregs during chronic inflammation is instrumental in controlling type 1 immunity while allowing type 2 immunity to dominate and facilitate inflammation resolution.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny.

In Cell Reports on 19 July 2022 by Sá da Bandeira, D., Kilpatrick, A. M., et al.

Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS

γδ T cells regulate the intestinal response to nutrient sensing.

In Science on 19 March 2021 by Sullivan, Z. A., Khoury-Hanold, W., et al.

The intestine is a site of direct encounter with the external environment and must consequently balance barrier defense with nutrient uptake. To investigate how nutrient uptake is regulated in the small intestine, we tested the effect of diets with different macronutrient compositions on epithelial gene expression. We found that enzymes and transporters required for carbohydrate digestion and absorption were regulated by carbohydrate availability. The "on-demand" induction of this machinery required γδ T cells, which regulated this program through the suppression of interleukin-22 production by type 3 innate lymphoid cells. Nutrient availability altered the tissue localization and transcriptome of γδ T cells. Additionally, transcriptional responses to diet involved cellular remodeling of the epithelial compartment. Thus, this work identifies a role for γδ T cells in nutrient sensing.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  • FC/FACS
  • Immunology and Microbiology

DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis.

In Nature on 1 March 2020 by Shao, Z., Flynn, R. A., et al.

The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.

  • Genetics
View this product on CiteAb