Product Citations: 7

PTEN acts as a metabolic checkpoint molecule in mature B cells to suppress TLR9-mediated inflammation

Preprint on Research Square on 14 March 2023 by Tsai, P., Hsu, W., et al.

Phosphatase and tensin homolog (PTEN) is a negative regulator for PI3K signaling essential for B cell development. To explore the physiological effects of PTEN mutation on peripheral B cells, we generated CD23/cre-PTEN Flox/Flox (CD23-cKO) mice in this study to avoid the developmental arrest. The mutant mice develop systemic inflammation associated with B cell expansion in the early phase followed with a severe immune cell-infiltration in multiple vital organs. PTEN deficiency leads to an accumulation of PI(3)P, an increase of lysosomal recruitment of TLR9/p38 complex, and an aberrant activation of TLR9/IL-6 axis in B cells. Interestingly, cholesterol biosynthesis pathway is upregulated in mutant cells upon TLR9 engagement. A blockade of cholesterol biosynthesis by targeting SQLE greatly reduces the level of PI(3)P and the interaction between TLR9 and p38, which lowers the level of TLR9-induced IL-6. Thus, PTEN represents a critical metabolic checkpoint that fine-tunes lipid and cholesterol homeostasis to control TLR9-driven inflammation.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells.

In Nature Communications on 3 December 2022 by Gerdes, P., Lim, S. M., et al.

Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
© 2022. The Author(s).

  • FC/FACS
  • Stem Cells and Developmental Biology

Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells

Preprint on BioRxiv : the Preprint Server for Biology on 17 February 2022 by Gerdes, P., Lim, S. M., et al.

Induced pluripotent stem cells (iPSCs) may differentiate into any cell of the body and as such have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements (TEs) and prevent TE-mediated mutagenesis. Here we applied short- or long-read genome sequencing to 30 bulk miPSC lines reprogrammed from 10 parental cell types, as well as 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs were rare, we found 55 de novo TE insertions, including examples intronic to Brca1 and Dmd . LINE-1 (L1) retrotransposon families were profoundly hypomethylated in miPSCs, beyond other TEs and the genome overall, and harbored alternative promoters for protein-coding genes. Treatment with the L1 reverse transcriptase inhibitor lamivudine did not hinder reprogramming, pointing to a viable strategy to block retrotransposition. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.

  • Stem Cells and Developmental Biology

Dose of Trp53, the main keeper of genome stability, influences tumorigenesis; however, the causes underlying and driving tumorigenesis over time by the loss of a single p53 allele are still poorly characterized. Here, we found that single p53 allele loss specifically impacted the oxidative, DNA damage and inflammatory status of hematopoietic lineages. In particular, single Trp53 allele loss in mice triggered oxidative stress in peripheral blood granulocytes and spleenocytes, whereas lack of two Trp53 alleles produced enhanced oxidative stress in thymus cells, resulting in a higher incidence of lymphomas in the Trp53 knockout (KO) mice compared with hemizygous (HEM). In addition, single or complete loss of Trp53 alleles, as well as p53 downregulation, led to a differential increase in basal, LPS- and UVB-induced expression of a plethora of pro-inflammatory cytokine, such as interleukin-12 (Il-12a), TNFα (Tnfa) and interleukin (Il-23a) in bone marrow-derived macrophage cells (BMDMs) compared to WT cells. Interestingly, p53-dependent increased inflammatory gene expression correlated with deregulated expression of the NF-κB pathway inhibitor IκBα. Chromatin immunoprecipitation data revealed decreased p65 binding to Nfkbia in the absence of p53 and p53 binding to Nfkbia promoter, uncovering a novel crosstalk mechanism between p53 and NF-κB transcription factors. Overall, our data suggest that single Trp53 allele loss can drive a sustained inflammatory, DNA damage and oxidative stress response that, over time, facilitate and support carcinogenesis.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology
  • Genetics
  • Immunology and Microbiology

Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model.

In Oncogene on 23 November 2017 by D'Abundo, L., Callegari, E., et al.

Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.

  • Cancer Research
View this product on CiteAb