Product Citations: 13

Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.
© 2023 The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

Cytotoxic CNS-associated T cells drive axon degeneration by targeting perturbed myelinating oligodendrocytes in<i>PLP1</i>mutant mice

Preprint on BioRxiv : the Preprint Server for Biology on 10 January 2023 by Abdelwahab, T., Stadler, D., et al.

Summary Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct mutations in the PLP1 gene result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8 + CNS-associated T cells in these myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates the recruitment of T cells and neural damage, while later targeting of CNS-associated T cell populations is inefficient and has no effect on neurodegeneration. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8 + T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.

  • Immunology and Microbiology
  • Neuroscience

Heritable vaginal bacteria influence immune tolerance and relate to early-life markers of allergic sensitization in infancy.

In Cell Reports Medicine on 16 August 2022 by McCauley, K. E., Rackaityte, E., et al.

Maternal asthma status, prenatal exposures, and infant gut microbiota perturbation are associated with heightened risk of atopy and asthma risk in childhood, observations hypothetically linked by intergenerational microbial transmission. Using maternal vaginal (n = 184) and paired infant stool (n = 172) samples, we identify four compositionally and functionally distinct Lactobacillus-dominated vaginal microbiota clusters (VCs) that relate to prenatal maternal health and exposures and infant serum immunoglobulin E (IgE) status at 1 year. Variance in bacteria shared between mother and infant pairs relate to VCs, maternal allergy/asthma status, and infant IgE levels. Heritable bacterial gene pathways associated with infant IgE include fatty acid synthesis and histamine and tryptophan degradation. In vitro, vertically transmitted Lactobacillus jensenii strains induce immunosuppressive phenotypes on human antigen-presenting cells. Murine supplementation with L. jensenii reduces lung eosinophils, neutrophilic expansion, and the proportion of interleukin-4 (IL-4)+ CD4+ T cells. Thus, bacterial and atopy heritability are intimately linked, suggesting a microbial component of intergenerational disease transmission.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny.

In Cell Reports on 19 July 2022 by Sá da Bandeira, D., Kilpatrick, A. M., et al.

Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS

Herpes simplex virus type 2 (HSV-2) is a neurotropic virus that can cause meningitis, an inflammation of the meninges in the central nervous system. T cells are key players in viral clearance, and these cells migrate from peripheral blood into the central nervous system upon infection. Several factors contribute to T cell migration, including the expression of chemokines in the inflamed tissue that attract T cells through their expression of chemokine receptors. Here we investigated CD8+ T cell profile in the spinal cord in a mouse model of herpes simplex virus type 2 neuroinflammation. Mice were infected with HSV-2 and sacrificed when showing signs of neuroinflammation. Cells and/or tissue from spinal cord, spleen, and blood were analyzed for expression of activation markers, chemokine receptors, and chemokines. High numbers of CD8+ T cells were present in the spinal cord following genital HSV-2-infection. CD8+ T cells were highly activated and HSV-2 glycoprotein B -specific effector cells, some of which showed signs of recent degranulation. They also expressed high levels of many chemokine receptors, in particular CCR2, CCR4, CCR5, and CXCR3. Investigating corresponding receptor ligands in spinal cord tissue revealed markedly increased expression of the cognate ligands CCL2, CCL5, CCL8, CCL12, and CXCL10. This study shows that during herpesvirus neuroinflammation anti-viral CD8+ T cells accumulate in the CNS. CD8+ T cells in the CNS also express chemotactic receptors cognate to the chemotactic gradients in the spinal cord. This indicates that anti-viral CD8+ T cells may migrate to infected areas in the spinal cord during herpesvirus neuroinflammation in response to chemotactic gradients.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb