Product Citations: 131

Mutations that negatively impact mitochondrial function are highly prevalent in humans and lead to disorders with a wide spectrum of disease phenotypes, including deficiencies in immune cell development and/or function. Previous analyses of mice with a hepatocyte-specific cytochrome c oxidase (COX) deficiency revealed an unexpected peripheral blood leukopenia associated with splenic and thymic atrophy. Here, we use mice with a hepatocyte-specific deletion of the COX assembly factor Sco1 to show that metabolic defects extrinsic to the hematopoietic compartment lead to a pan-lymphopenia represented by severe losses in both B and T cells. We further demonstrate that immune defects in these mice are associated with the loss of bone marrow lymphoid progenitors common to both lineages and early signs of autoantibody-mediated autoimmunity. Our findings collectively identify hepatocyte dysfunction as a potential instigator of immunodeficiency in patients with congenital mitochondrial defects who suffer from chronic or recurrent infections.
© 2025 The Author(s).

Sexual dimorphism in the mouse bone marrow niche regulates hematopoietic engraftment via sex-specific Kdm5c/Cxcl12 signaling.

In The Journal of Clinical Investigation on 21 January 2025 by Cui, X., Hou, L., et al.

The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in the BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared with female mice. Sex-mismatched coculture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment. The cotransplantation of male stromal cells significantly enhanced engraftment in female recipients. Single-cell RNA-seq revealed that the lower expression of the X-linked lysine H3K4 demethylase, Kdm5c, in male MSCs led to the increased expression of Cxcl12. In MSC-specific Kdm5c-KO mouse model, the reduction of KDM5C in female MSCs enhanced MSC quantity and function, ultimately improving engraftment to the male level. Kdm5c thus plays a role in driving sexual dimorphism in the BM niche and hematopoietic regeneration. Our study unveils a sex-dependent mechanism governing the BM niche regulation and its impact on hematopoietic engraftment. The finding offers potential implications for enhancing BM transplantation efficacy in clinical settings by harnessing the resource of male MSCs or targeting Kdm5c.

GM-CSF-dependent CD301b+ lung dendritic cells confer tolerance to inhaled allergens

Preprint on Research Square on 4 June 2024 by Nakano, H., Wilkinson, C., et al.

Abstract The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.

  • Immunology and Microbiology

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic β-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and β-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Soluble CTLA-4 mainly produced by Treg cells inhibits type 1 inflammation without hindering type 2 immunity to allow for inflammation resolution

Preprint on BioRxiv : the Preprint Server for Biology on 26 May 2023 by Osaki, M. & Sakaguchi, S.

CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms. Here, we show that effector-type regulatory T cells (Tregs) are main sCTLA-4 producers in basal and inflammatory states with distinct kinetics upon TCR stimulation. Mice specifically deficient in sCTLA-4 production exhibited spontaneous activation of Th1, Th17, Tfh, and Tc1 cells, autoantibody and IgE production, M1-like macrophage polarization, and impaired wound healing. In contrast, sCTLA-4-intact mCTLA-4-deficient mice, when compared with double-deficient mice, developed milder systemic inflammation and showed predominant activation/differentiation of Th2, M2-like macrophages, and eosinophils. Consistently, recombinant sCTLA-4 inhibited in vitro differentiation of naïve T cells towards Th1 through CD80/CD86 blockade on antigen-presenting cells, but did not affect Th2 differentiation. Moreover, sCTLA-4-intact mCTLA-4-deficient Tregs effectively suppressed Th1-mediated experimental colitis whereas double-deficient Tregs did not. Thus, sCTLA-4 production by Tregs during chronic inflammation is instrumental in controlling type 1 immunity while allowing type 2 immunity to dominate and facilitate inflammation resolution.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb