Product Citations: 444

1 image found

Recombinant granulocyte colony-stimulating factor (G-CSF) is the most commonly used agent for treating neutropenia and mobilizing hematopoietic stem cells (HSCs) for transplantation. However, some patients do not respond effectively to the currently used mobilization protocols. To address this, new therapeutic approaches are needed. A potential strategy is pharmacological induction of endogenous mobilizing factors via cobalt protoporphyrin IX (CoPP). CoPP mobilizes HSCs and granulocytes by increasing endogenous G-CSF, though optimal dosing and potential side effects remain unclear. Our study aimed to optimize CoPP dosing and timing, and assess its safety in mobilizing cells from bone marrow to blood.
Mice were treated with different doses of CoPP, and blood cell counts, cytokine concentrations, and organ damage markers were evaluated at various time points after injection.
Our results show that CoPP exerts a dose-dependent mobilizing effect, with the highest G-CSF levels and number of mobilized leukocytes observed in mice treated with 10 mg/kg of CoPP. While there were no severe adverse effects, there were mild fluctuations in markers of organ function, including a reduction in blood urea nitrogen (BUN) and glucose levels during the five days of administration. Additionally, although most parameters normalized within 30 days, the decrease in BUN persisted. Mice experienced short-term weight loss following CoPP administration, but they regained their initial weight within two weeks.
This study demonstrates that CoPP mobilizes cells from the bone marrow to the blood in a dose-dependent manner, with mild side effects, including temporary changes in biochemical markers and a sustained reduction in BUN levels.
© 2025. The Author(s).

  • Biochemistry and Molecular biology
  • Cell Biology

Activated immune cells infiltrate the vasculature during the pathophysiology of hypertension by establishing a vascular-immune interface that contributes to blood pressure dysregulation and organ failure. Many observations indicate a key role of CD8+ T cells in hypertension but mechanisms regulating their activation and interplay with the cardiovascular system are still unknown. In murine model, here we show that a specific member of the phosphoinositide-3-kinases (PI3K) family of lipid kinases, PI3Kγ, is a key intracellular signaling of CD8+ T cells activation and RANTES/CCL5 secretion in hypertension: CCL5-CCR5 signaling is crucial for the establishment of the vascular-immune interface in peripheral organs, lastly contributing to CD8+ tissue infiltration, organ dysfunction and blood pressure elevation. Our studies identify PI3Kγ as a booster of effector CD8+ T cell function, even in the absence of external stimuli. Lastly, an enhanced PI3Kγ signaling mediates the bystander activation of CD8+ T cells and proves effective in transferring the hypertensive phenotype between mice.
© 2025. The Author(s).

  • Cardiovascular biology
  • Immunology and Microbiology

IDH status dictates oHSV mediated metabolic reprogramming affecting anti-tumor immunity.

In Nature Communications on 24 April 2025 by Sahu, U., Mullarkey, M. P., et al.

Identification of isocitrate dehydrogenase (IDH) mutations has uncovered the crucial role of metabolism in gliomagenesis. Oncolytic herpes virus (oHSV) initiates direct tumor debulking by tumor lysis and activates anti-tumor immunity, however, little is known about the role of glioma metabolism in determining oHSV efficacy. Here we identify that oHSV rewires central carbon metabolism increasing glucose utilization towards oxidative phosphorylation and shuttling glutamine towards reductive carboxylation in IDH wildtype glioma. The switch in metabolism results in increased lipid synthesis and cellular ROS. PKC induces ACSL4 in oHSV treated cells leading to lipid peroxidation and ferroptosis. Ferroptosis is critical to launch an anti-tumor immune response which is important for viral efficacy. Mutant IDH (IDHR132H) gliomas are incapable of reductive carboxylation and hence ferroptosis. Pharmacological blockade of IDHR132H induces ferroptosis and anti-tumor immunity. This study provides a rationale to use an IDHR132H inhibitor to treat high grade IDH-mutant glioma patients undergoing oHSV treatment.
© 2025. The Author(s).

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

Tumor stage-driven disruption of NK cell maturation in human and murine tumors.

In IScience on 15 November 2024 by Russick, J., Torset, C., et al.

Natural killer (NK) cells play a pivotal role against cancer, both by direct killing of malignant cells and by promoting adaptive immune response though cytokine and chemokine secretion. In the lung tumor microenvironment (TME), NK cells are scarce and dysfunctional. By conducting single-cell transcriptomic analysis of lung tumors, and exploring pseudotime, we uncovered that the intratumoral maturation trajectory of NK cells is disrupted in a tumor stage-dependent manner, ultimately resulting in the selective exclusion of the cytotoxic subset. Using functional assays, we observed intratumoral NK cell death and a reduction in cytotoxic capacities depending on the tumor stage. Finally, our analyses of human public dataset on lung cancer corroborate these findings, revealing a parallel dysfunctional maturation process of NK cells during tumor progression. These results highlight additional mechanisms by which tumor cells escape from NK cell cytotoxicity, therefore paving the way for tailored therapeutic strategies.
© 2024 The Author(s).

  • Cancer Research

Immunogenic cell death (ICD) and ferroptosis have recently emerged as key factors in the anticancer immune response. Among the treatments able to induce ICD and the associated release of danger signals is photodynamic therapy (PDT). Ferroptosis for its part results from lipid peroxidation and is induced by CD8+ T cells to kill nearby cancer cells on IFN-γ production. We aimed to combine the two concepts, that is, to evaluate whether the strong pro-oxidant effects of PDT may promote ferroptosis and antigen release and to develop a procedure for in situ PDT to prepare the soil for highly endocytotic immature dendritic cell (iDC) adoptive transfer. This approach was implemented for managing peritoneal carcinomatosis, a lesion often associated with poor outcomes.
We used three-dimensional (3D) heterotypic spheroids made of cancer cells, exposed them to a white light-activated OR141 photosensitizer (PS), and subsequently complexified them by adding iDC and naive lymphocytes. We next used a model of mouse peritoneal carcinomatosis and administered PDT using laparoscopy to locally induce photoactivation using the endoscope light. The immune response following adoptive transfer of iDC was tracked both in vivo and ex vivo using isolated immune cells from in situ vaccinated mice.
Cancer cells undergoing PDT-induced cell death significantly increased ICD markers and the infiltration of iDCs in spheroids, relying on ferroptosis. These actions induced the sequential activation of CD8+ and CD4+ T cells as revealed by a significant spheroid 3D structure deterioration and, remarkably, were not recapitulated by conventional ferroptosis inducer RSL3. Using LED light from an endoscope for in situ photoactivation of PS enabled us to apply the vaccination modality in mice with peritoneal tumors. Consecutive intraperitoneal injection of iDCs resulted in delayed tumor growth, increased survival rates, and prevented tumor relapse on rechallenge. CD8+ T cell response was supported by depletion experiments, nodal detection of early activated T cells, and ex vivo T cell-induced cytotoxicity toward spheroids.
The combination of in situ PDT locally delivered by an endoscope light and iDC administration induces a durable memory immune response against peritoneal carcinomatosis thereby opening new perspectives for the treatment of a life-threatening condition.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb