Product Citations: 170

As part of our work to develop small-molecule inhibitors (SMIs) of the CD40-CD40L(CD154) costimulatory protein-protein interaction, here, we describe the ability of two of our most promising SMIs, DRI-C21041 and DRI-C21095, to prolong the survival and function of islet allografts in two murine models of islet transplantation (under the kidney capsule and in the anterior chamber of the eye) and to prevent autoimmune type 1 diabetes (T1D) onset in NOD mice. In both transplant models, a significant portion of islet allografts (50%-80%) remained intact and functional long after terminating treatment, suggesting the possibility of inducing operational immune tolerance via inhibition of the CD40-CD40L axis. SMI-treated mice maintained the structural integrity and function of their islet allografts with concomitant reduction in immune cell infiltration as evidenced by direct longitudinal imaging in situ. Furthermore, in female NODs, three-month SMI treatment reduced the incidence of diabetes from 80% to 60% (DRI-C21041) and 25% (DRI-C21095). These results (i) demonstrate the susceptibility of this TNF superfamily protein-protein interaction to small-molecule inhibition, (ii) confirm the in vivo therapeutic potential of these SMIs of a critical immune checkpoint, and (iii) reaffirm the therapeutic promise of CD40-CD40L blockade in islet transplantation and T1D prevention. Thus, CD40L-targeting SMIs could ultimately lead to alternative immunomodulatory therapeutics for transplant recipients and prevention of autoimmune diseases that are safer, less immunogenic, more controllable (shorter half-lives), and more patient-friendly (i.e., suitable for oral administration, which makes them easier to administer) than corresponding antibody-based interventions.
Copyright © 2024 Chuang, Alcazar, Watts, Abdulreda and Buchwald.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Influenza viruses pose a threat to public health as evidenced by severe morbidity and mortality in humans on a yearly basis. Given the constant changes in the viral glycoproteins owing to antigenic drift, seasonal influenza vaccines need to be updated periodically and effectiveness often drops due to mismatches between vaccine and circulating strains. In addition, seasonal influenza vaccines are not protective against antigenically shifted influenza viruses with pandemic potential. Here, we have developed a highly immunogenic vaccination regimen based on live-attenuated influenza vaccines (LAIVs) comprised of an attenuated virus backbone lacking non-structural protein 1 (ΔNS1), the primary host interferon antagonist of influenza viruses, with chimeric hemagglutinins (cHA) composed of exotic avian head domains with a highly conserved stalk domain, to redirect the humoral response towards the HA stalk. In this study, we showed that cHA-LAIV vaccines induce robust serum and mucosal responses against group 1 stalk and confer antibody-dependent cell cytotoxicity activity. Mice that intranasally received cH8/1-ΔNS1 followed by a cH11/1-ΔNS1 heterologous booster had robust humoral responses for influenza A virus group 1 HAs and were protected from seasonal H1N1 influenza virus and heterologous highly pathogenic avian H5N1 lethal challenges. When compared with mice immunized with the standard of care or cold-adapted cHA-LAIV, cHA-ΔNS1 immunized mice had robust antigen-specific CD8+ T-cell responses which also correlated with markedly reduced lung pathology post-challenge. These observations support the development of a trivalent universal influenza vaccine for the protection against group 1 and group 2 influenza A viruses and influenza B viruses.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

High NEK2 expression in myeloid progenitors suppresses T cell immunity in multiple myeloma.

In Cell Reports Medicine on 17 October 2023 by Cheng, Y., Sun, F., et al.

Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.
Copyright © 2023 Chettab, Fitzsimmons, Novikov, Denis, Phelip, Mathé, Choffour, Beaumel, Fourmaux, Norca, Kryza, Evesque, Jordheim, Perrial, Matera, Caroff, Kerzerho and Dumontet.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Reinforced erythroid differentiation inhibits leukemogenic potential of t(8;21) leukemia.

In The FASEB Journal on 1 October 2022 by Wang, M. X., Yan, L., et al.

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.
© 2022 Federation of American Societies for Experimental Biology.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
View this product on CiteAb