Product Citations: 6

GM-CSF-dependent CD301b+ lung dendritic cells confer tolerance to inhaled allergens

Preprint on Research Square on 4 June 2024 by Nakano, H., Wilkinson, C., et al.

Abstract The severity of allergic asthma is driven by the balance between allergen-specific T regulatory (Treg) and T helper (Th)2 cells. However, it is unclear whether specific subsets of conventional dendritic cells (cDCs) promote the differentiation of these two T cell lineaeges. We have identified a subset of lung resident type 2 cDCs (cDC2s) that display high levels of CD301b and have potent Treg-inducing activity ex vivo. Single cell RNA sequencing and adoptive transfer experiments show that during allergic sensitization, many CD301b+ cDC2s transition in a stepwise manner to CD200+ cDC2s that selectively promote Th2 differentiation. GM-CSF augments the development and maintenance of CD301b+ cDC2s in vivo, and also selectively expands Treg-inducing CD301b+ cDC2s derived from bone marrow. Upon their adoptive transfer to recipient mice, lung-derived CD301b+ cDC2s confer immunological tolerance to inhaled allergens. Thus, GM-CSF maintains lung homeostasis by increasing numbers of Treg-inducing CD301b+ cDC2s.

  • Immunology and Microbiology

CD11b+ lung dendritic cells at different stages of maturation induce Th17 or Th2 differentiation.

In Nature Communications on 19 August 2021 by Izumi, G., Nakano, H., et al.

Dendritic cells (DC) in the lung that induce Th17 differentiation remain incompletely understood, in part because conventional CD11b+ DCs (cDC2) are heterogeneous. Here, we report a population of cDCs that rapidly accumulates in lungs of mice following house dust extract inhalation. These cells are Ly-6C+, are developmentally and phenotypically similar to cDC2, and strongly promote Th17 differentiation ex vivo. Single cell RNA-sequencing (scRNA-Seq) of lung cDC2 indicates 5 distinct clusters. Pseudotime analysis of scRNA-Seq data and adoptive transfer experiments with purified cDC2 subpopulations suggest stepwise developmental progression of immature Ly-6C+Ly-6A/E+ cDC2 to mature Ly-6C-CD301b+ lung resident cDC2 lacking Ccr7 expression, which then further mature into CD200+ migratory cDC2 expressing Ccr7. Partially mature Ly-6C+Ly-6A/E-CD301b- cDC2, which express Il1b, promote Th17 differentiation. By contrast, CD200+ mature cDC2 strongly induce Th2, but not Th17, differentiation. Thus, Th17 and Th2 differentiation are promoted by lung cDC2 at distinct stages of maturation.
© 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • Immunology and Microbiology

Overtly self-reactive T cells are removed during thymic selection. However, it has been recently established that T cell self-reactivity promotes protective immune responses. Apparently, the level of self-reactivity of mature T cells must be tightly balanced. Our mathematical model and experimental data show that the dynamic regulation of CD4- and CD8-LCK coupling establish the self-reactivity of the peripheral T cell pool. The stoichiometry of the interaction between CD8 and LCK, but not between CD4 and LCK, substantially increases upon T cell maturation. As a result, peripheral CD8+ T cells are more self-reactive than CD4+ T cells. The different levels of self-reactivity of mature CD8+ and CD4+ T cells likely reflect the unique roles of these subsets in immunity. These results indicate that the evolutionary selection pressure tuned the CD4-LCK and CD8-LCK stoichiometries, as they represent the unique parts of the proximal T cell receptor (TCR) signaling pathway, which differ between CD4+ and CD8+ T cells.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

In Vivo leukocyte changes induced by Escherichia coli subtilase cytotoxin.

In Infection and Immunity on 1 April 2011 by Wang, H., Paton, A. W., et al.

Subtilase cytotoxin (SubAB) is the prototype of a new family of AB(5) cytotoxins produced by Shiga-toxigenic Escherichia coli. Its cytotoxicity is due to its capacity to enter cells and specifically cleave the essential endoplasmic reticulum chaperone BiP. Previous studies have shown that intraperitoneal injection of mice with purified SubAB causes a pathology that overlaps with that seen in human cases of hemolytic-uremic syndrome, as well as dramatic splenic atrophy, suggesting that leukocytes are targeted. Here we investigated SubAB-induced leukocyte changes in the peritoneal cavity, blood, and spleen. After intraperitoneal injection, SubAB bound peritoneal leukocytes (including T and B lymphocytes, neutrophils, and macrophages). SubAB elicited marked leukocytosis, which peaked at 24 h, and increased neutrophil activation in the blood and peritoneal cavity. It also induced a marked redistribution of leukocytes among the three compartments: increases in leukocyte subpopulations in the blood and peritoneal cavity coincided with a significant decline in splenic cells. SubAB treatment also elicited significant increases in the apoptosis rates of CD4(+) T cells, B lymphocytes, and macrophages. These findings indicate that apart from direct cytotoxic effects, SubAB interacts with cellular components of both the innate and the adaptive arm of the immune system, with potential consequences for disease pathogenesis.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

STAT4- and STAT6-signaling molecules in a murine model of multiple sclerosis.

In The FASEB Journal on 1 February 2006 by Rodriguez, M., Zoecklein, L., et al.

Epidemiological studies suggest that an environmental factor (possibly a virus) acquired early in life may trigger multiple sclerosis (MS). The virus may remain dormant in the central nervous system but then becomes activated in adulthood. All existing models of MS are characterized by inflammation or demyelination that follows days after virus infection or antigen inoculation. While investigating the role of CD4+ T cell responses following Theiler's virus infection in mice deficient in STAT4 or STAT6, we discovered a model in which virus infection was followed by demyelination after a very prolonged incubation period. STAT4-/- mice were resistant to demyelination for 180 days after infection, but developed severe demyelination after this time point. Inflammatory cells and up-regulation of Class I and Class II MHC antigens characterized these lesions. Virus antigen was partially controlled during the early chronic phase of the infection even though viral RNA levels remained high throughout infection. Demyelination correlated with the appearance of virus antigen expression. Bone marrow reconstitution experiments indicated that the mechanism of the late onset demyelination was the result of the STAT4-/- immune system. Thus, virus infection of STAT4-/- mice results in a model that may allow for dissection of the immune events predisposing to late-onset demyelination in MS.

View this product on CiteAb