Product Citations: 48

Recombinant granulocyte colony-stimulating factor (G-CSF) is the most commonly used agent for treating neutropenia and mobilizing hematopoietic stem cells (HSCs) for transplantation. However, some patients do not respond effectively to the currently used mobilization protocols. To address this, new therapeutic approaches are needed. A potential strategy is pharmacological induction of endogenous mobilizing factors via cobalt protoporphyrin IX (CoPP). CoPP mobilizes HSCs and granulocytes by increasing endogenous G-CSF, though optimal dosing and potential side effects remain unclear. Our study aimed to optimize CoPP dosing and timing, and assess its safety in mobilizing cells from bone marrow to blood.
Mice were treated with different doses of CoPP, and blood cell counts, cytokine concentrations, and organ damage markers were evaluated at various time points after injection.
Our results show that CoPP exerts a dose-dependent mobilizing effect, with the highest G-CSF levels and number of mobilized leukocytes observed in mice treated with 10 mg/kg of CoPP. While there were no severe adverse effects, there were mild fluctuations in markers of organ function, including a reduction in blood urea nitrogen (BUN) and glucose levels during the five days of administration. Additionally, although most parameters normalized within 30 days, the decrease in BUN persisted. Mice experienced short-term weight loss following CoPP administration, but they regained their initial weight within two weeks.
This study demonstrates that CoPP mobilizes cells from the bone marrow to the blood in a dose-dependent manner, with mild side effects, including temporary changes in biochemical markers and a sustained reduction in BUN levels.
© 2025. The Author(s).

  • Biochemistry and Molecular biology
  • Cell Biology

Macrophage pyroptosis has been identified as a critical pathological mechanism in inflammation-related atherosclerosis (AS). In this work, we have demonstrated that Zn2+ features the strongest anti-inflammatory performance by screening 10 representative metal ions, and the MTC1 agonists can trigger lysosomal Zn2+ release and inhibit pyroptosis in macrophages. Based on these findings, we further engineered a mucolipin TRP channel 1 (MTC1)-related therapeutic nanoplatform for endogenously triggering lysosomal zinc release to curb inflammation and block macrophage pyroptosis. This nanoplatform consists of mesoporous silica nanoparticles to deliver MTC1 agonists and carbon nanodots, which could synergistically exert antiatherosclerotic effect by scavenging toxic reactive oxygen species, inhibiting macrophage pyroptosis, modulating macrophage transition, and rebuilding atherosclerotic immune microenvironment. These findings demonstrate that macrophage pyroptosis can be efficiently blocked via leveraging self-lysosomal zinc pool, which provides the paradigm of lysosomal zinc modulation-involved nanotherapeutics for managing other inflammatory diseases.

  • Cell Biology
  • Immunology and Microbiology

Food allergy (FA) has received increased attention in recent years. Multiple studies have highlighted the crucial role of short-chain fatty acids (SCFAs) in the development of IgE-mediated FA. Here, a case-control approach was employed to analyze SCFAs profiles in children with FA, while an ovalbumin (OVA)-sensitized mouse model was utilized to explore the underlying mechanism by which SCFAs mitigate FA. Children with food-sensitized tolerance (FST) (n = 20) or FA (n = 20), and healthy controls (HC) (n = 20) were recruited to analyze SCFAs profiles. The HC group exhibited higher SCFAs levels in fecal samples than the FST, FA, and FST + FA groups. Data from an OVA-sensitized mouse model showed that butyrate exhibited a more significant effect on reducing allergic reactions compared to other SCFAs. Compared to the negative control group, OVA-induced oxidative stress (OS) triggered excessive Notch signaling activation, which subsequently impaired both tight junctions integrity and mucosal barrier function in murine intestinal epithelial cells (IECs). Gut dysbiosis induced mucus layer erosion, thereby elevating IECs exposure to food antigens and OS, which potentiated Notch signaling activation. However, butyrate counteracted this loop by restoring microbiota structure and suppressing reactive oxygen species (ROS)/Notch cascades. Strikingly, low-dose butyrate (0.25-1 mM) protected rat small intestine crypt epithelial cells (IEC-6) by inhibiting ROS, whereas high-dose (2-5 mM) exacerbated oxidative injury and triggered activation of Notch signaling. Our study revealed the potential molecular mechanisms through which butyrate alleviates food allergy, providing a potential therapeutic strategy for its management.
© 2025 The Author(s). iMeta published by John Wiley & Sons Australia, Ltd on behalf of iMeta Science.

The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis.

In International Immunopharmacology on 10 January 2025 by Zhang, Y., Feng, R., et al.

Chronic prostatitis and Pelvic Pain syndrome (CP/CPPS) is an autoimmune inflammatory disease characterized by pelvic or perineal pain and infiltration of inflammatory cells in the prostate. C-X-C chemokine receptor type 7 (CXCR7) is an atypical chemokine receptor that has been shown to play a key role in inflammatory processes in prostate cancer. However, the role of CXCR7 in autoimmune prostate and immune regulation in CP/CPPS along with the mechanism of action for CXCR7 remains unclear. In this study, a mouse model of experimental autoimmune prostatitis (EAP) was constructed by subcutaneous injection of antigen, and CXCR7 agonist was administered to investigate the effects of CXCR7 on the proportion of immune cells and fibrosis in CP/CPPS. Western blotting, immunohistochemical staining and immunofluorescence, flow cytometry, and masson's trichrome staining were used to study the regulatory mechanisms of CXCR7 in immune regulation. CXCR7 agonists can significantly reduce pain and prostatic inflammation, and in vivo flow cytometry studies showed that the antagonists restored the imbalance of the Th17/Treg cell ratio. To elucidate the potential mechanisms by which CXCR7 influences the pathogenesis of CP/CPPS, we conducted simultaneous RNA-seq and non-targeted metabolome sequencing. Our findings suggest that CXCR7 agonists alleviate fibrosis in autoimmune prostatitis by inhibiting the TGFβ/SMAD pathway. This study provides the foundation to target the immunological function of CXCR7 as a novel therapy for CP/CPPS.
Copyright © 2024. Published by Elsevier B.V.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Cancer Cell-Derived Exosomal miR-500a-3p Modulates Hepatic Stellate Cell Activation and the Immunosuppressive Microenvironment.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 January 2025 by Zhang, Y., Li, X., et al.

Hepatocellular carcinoma (HCC) mainly depends on liver fibrosis/cirrhosis, which is regulated by tumor cells and the tumor microenvironment (TME), and is a crucial factor in tumor progression. This study aimed to identify abnormally expressed miR-500a-3p in the hepatitis-cirrhosis-HCC pathway and explored the roles of miR-500a-3p in HCC progression. A clinical cohort of patients with HCC is studied retrospectively. Subsequently, the role of miR-500a-3p transported by HCC exosomes in hepatic stellate cell (HSC) activation, hepatoma growth and invasion, and immune cell differentiation is determined by in vitro and in vivo experiments. In clinical tissues, miR-500a-3p is significantly enriched in HCC and cirrhosis tissues, and co-expression of the immune marker CD4 or PD-L1 significantly correlates with low survival rates in patients. Extracellular miR-500a-3p is taken up by HSC and PBMC, which promotes the secretion of the cytokines TGF-β1 and IL-10, increases PD-L1 expression in HSC, and stabilizes PD-1 expression in PBMC to affect the TME. Moreover, miR-500a-3p is associated with CD4+ T-cell exhaustion and Treg differentiation and is significantly associated with increased tumorigenicity in in situ mouse HCC models. Mechanistically, HCC-derived exosomal miR-500a-3p directly influences SOCS2 to regulate the JAK3/STAT5A/STAT5B signaling pathway. MiR-500a-3p promotes the growth and migration of HCC through the SOCS2/JAK3/STAT5A/STAT5B axis.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.

  • Cancer Research
View this product on CiteAb