Product Citations: 42

Astragaloside IV inhibits experimental autoimmune encephalomyelitis by modulating the polarization of both microglia/macrophages and astrocytes.

In Folia Neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences on 11 October 2023 by Yu, J., Mu, B., et al.

Astragaloside IV (AST IV), a major saponin component and active ingredient isolated from Astragalus membranaceus, has been well known to exhibit neuroprotective effects on diverse models of neurological diseases. Accumulating evidence suggests that dynamic balance of microglia/macrophages and astrocytes plays a vital role in neuroprotection and remyelination. However, dysregulation of microglia/macrophages and astrocytes orchestrate the pathogenesis of nervous system disorders. Therefore, we hypothesized that switching the transformation of microglia/macrophages and astrocytes into the neuroprotective M2 and A2 phenotypes, respectively, could be a potential target for therapeutic intervention. In the present study, we evaluate the efficacy of AST IV intervention on the effects of microglia/macrophages and astrocytes in an experimental autoimmune encephalomyelitis (EAE) model. AST IV improved paralysis and pathology of EAE by inhibiting the neurotoxic M1 microglia/macrophage phenotype, promoting M2 phenotype, shifting astrocytes towards a neuroprotective A2 phenotype, and protecting neurons from apoptosis through inhibition of TLR4/Myd88/NF-kB signalling pathway. Our study showed that AST IV could be a potential and promising drug for multiple sclerosis treatment.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

H3K36 methylation maintains cell identity by regulating opposing lineage programmes.

In Nature Cell Biology on 1 August 2023 by Hoetker, M. S., Yagi, M., et al.

The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

  • Mus musculus (House mouse)
  • Cell Biology

Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells.

In Nature Communications on 12 May 2022 by Omatsu, Y., Aiba, S., et al.

In bone marrow, special microenvironments, known as niches, are essential for the maintenance of hematopoietic stem cells (HSCs). A population of mesenchymal stem cells, termed CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells or leptin receptor-expressing cells are the major cellular component of HSC niches. The molecular regulation of HSC niche properties is not fully understood. The role of Runx transcription factors, Runx1 and Runx2 in HSC cellular niches remains unclear. Here we show that Runx1 is predominantly expressed in CAR cells and that mice lacking both Runx1 and Runx2 in CAR cells display an increase in fibrosis and bone formation with markedly reduced hematopoietic stem and progenitor cells in bone marrow. In vitro, Runx1 is induced by the transcription factor Foxc1 and decreases fibrotic gene expression in CAR cells. Thus, HSC cellular niches require Runx1 or Runx2 to prevent their fibrotic conversion and maintain HSCs and hematopoiesis in adults.
© 2022. The Author(s).

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology

p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia.

In JCI Insight on 8 October 2021 by Man, N., Mas, G., et al.

Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.

  • Cancer Research

Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb