Product Citations: 136

1 image found

Immunogenic cell death (ICD) and ferroptosis have recently emerged as key factors in the anticancer immune response. Among the treatments able to induce ICD and the associated release of danger signals is photodynamic therapy (PDT). Ferroptosis for its part results from lipid peroxidation and is induced by CD8+ T cells to kill nearby cancer cells on IFN-γ production. We aimed to combine the two concepts, that is, to evaluate whether the strong pro-oxidant effects of PDT may promote ferroptosis and antigen release and to develop a procedure for in situ PDT to prepare the soil for highly endocytotic immature dendritic cell (iDC) adoptive transfer. This approach was implemented for managing peritoneal carcinomatosis, a lesion often associated with poor outcomes.
We used three-dimensional (3D) heterotypic spheroids made of cancer cells, exposed them to a white light-activated OR141 photosensitizer (PS), and subsequently complexified them by adding iDC and naive lymphocytes. We next used a model of mouse peritoneal carcinomatosis and administered PDT using laparoscopy to locally induce photoactivation using the endoscope light. The immune response following adoptive transfer of iDC was tracked both in vivo and ex vivo using isolated immune cells from in situ vaccinated mice.
Cancer cells undergoing PDT-induced cell death significantly increased ICD markers and the infiltration of iDCs in spheroids, relying on ferroptosis. These actions induced the sequential activation of CD8+ and CD4+ T cells as revealed by a significant spheroid 3D structure deterioration and, remarkably, were not recapitulated by conventional ferroptosis inducer RSL3. Using LED light from an endoscope for in situ photoactivation of PS enabled us to apply the vaccination modality in mice with peritoneal tumors. Consecutive intraperitoneal injection of iDCs resulted in delayed tumor growth, increased survival rates, and prevented tumor relapse on rechallenge. CD8+ T cell response was supported by depletion experiments, nodal detection of early activated T cells, and ex vivo T cell-induced cytotoxicity toward spheroids.
The combination of in situ PDT locally delivered by an endoscope light and iDC administration induces a durable memory immune response against peritoneal carcinomatosis thereby opening new perspectives for the treatment of a life-threatening condition.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

  • Immunology and Microbiology

Machine learning engineered PoLixNano nanoparticles overcome delivery barriers for nebulized mRNA therapeutics

Preprint on BioRxiv : the Preprint Server for Biology on 4 November 2024 by Zhang, D., Xiao, Q., et al.

There continues to be a dearth of competent inhalable mRNA delivery although it holds great potential for addressing a wide variety of refractory diseases. The huge advances seen with parenteral-administered lipid nanoparticle (LNP) have not been translated into nebulized mRNA delivery due to the aggressive nebulization process and insurmountable barriers inherent to respiratory mucosa. Here, we show amphiphilic block copolymers revealed by machine learning (ML) can spontaneously form stabilized nanoparticles (PoLixNano) with the lipids components of LNP and simultaneously impart the PoLixNano with "shield" (shear force-resistant) and "spear" (pulmonary barriers-penetrating abilities) capabilities. We present a ML approach that leverages physicochemical properties and inhaled mRNA transfection profiles of a chemically diverse library of polymeric components to validate the integration of "shield" and "spear" properties as highly predictive indicators of transfection efficiency. This quantitative structure-mRNA transfection prediction (QSMTP) model identifies top-performing amphiphilic-copolymers from more than 10000 candidates and suggests their mucus-penetrating ability outweights the shear force-resistant property in contributing to efficient mRNA transfection. The optimized PoLixNano substantially outperforms the LNP counterpart and mediates up to 1114-times higher levels of mRNA transfection in animal models with negligible toxicities. The PoLixNano promotes overwhelming SARS-CoV-2 antigen-specific sIgA antibody secretion and expansion of TRM cells which collectively confers 100% protection in mice against lethal SARS-CoV-2 challenges and blocks the transmission of Omicron variant between hamsters. PoLixNano also displays versatile therapeutic potential in lung carcinoma and cystic fibrosis models. Our study provides new insights for designing delivery platforms of aerosol-inhaled mRNA therapeutics with clinical translation potential.

  • Genetics

Camouflaging attenuated Salmonella by cryo-shocked macrophages for tumor-targeted therapy.

In Signal Transduction and Targeted Therapy on 10 January 2024 by Wu, L., Du, Z., et al.

Live bacteria-mediated antitumor therapies mark a pivotal point in cancer immunotherapy. However, the difficulty in reconciling the safety and efficacy of bacterial therapies has limited their application. Improving bacterial tumor-targeted delivery while maintaining biosafety is a critical hurdle for the clinical translation of live microbial therapy for cancer. Here, we developed "dead" yet "functional" Salmonella-loaded macrophages using liquid nitrogen cold shock of an attenuated Salmonella typhimurium VNP20009-contained macrophage cell line. The obtained "dead" macrophages achieve an average loading of approximately 257 live bacteria per 100 cells. The engineered cells maintain an intact cellular structure but lose their original pathogenicity, while intracellular bacteria retain their original biological activity and are delay freed, followed by proliferation. This "Trojan horse"-like bacterial camouflage strategy avoids bacterial immunogenicity-induced neutrophil recruitment and activation in peripheral blood, reduces the clearance of bacteria by neutrophils and enhances bacterial tumor enrichment efficiently after systemic administration. Furthermore, this strategy also strongly activated the tumor microenvironment, including increasing antitumor effector cells (including M1-like macrophages and CD8+ Teffs) and decreasing protumor effector cells (including M2-like macrophages and CD4+ Tregs), and ultimately improved antitumor efficacy in a subcutaneous H22 tumor-bearing mouse model. The cryo-shocked macrophage-mediated bacterial delivery strategy holds promise for expanding the therapeutic applications of living bacteria for cancer.© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research

mAb therapy controls CNS-resident lyssavirus infection via a CD4 T cell-dependent mechanism.

In EMBO Molecular Medicine on 11 October 2023 by Mastraccio, K. E., Huaman, C., et al.

Infections with rabies virus (RABV) and related lyssaviruses are uniformly fatal once virus accesses the central nervous system (CNS) and causes disease signs. Current immunotherapies are thus focused on the early, pre-symptomatic stage of disease, with the goal of peripheral neutralization of virus to prevent CNS infection. Here, we evaluated the therapeutic efficacy of F11, an anti-lyssavirus human monoclonal antibody (mAb), on established lyssavirus infections. We show that a single dose of F11 limits viral load in the brain and reverses disease signs following infection with a lethal dose of lyssavirus, even when administered after initiation of robust virus replication in the CNS. Importantly, we found that F11-dependent neutralization is not sufficient to protect animals from mortality, and a CD4 T cell-dependent adaptive immune response is required for successful control of infection. F11 significantly changes the spectrum of leukocyte populations in the brain, and the FcRγ-binding function of F11 contributes to therapeutic efficacy. Thus, mAb therapy can drive potent neutralization-independent T cell-mediated effects, even against an established CNS infection by a lethal neurotropic virus.
© 2023 Commonwealth of Australia and The Authors. Published under the terms of the CC BY 4.0 license. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Immunology and Microbiology

A small molecule inhibitor of PTP1B and PTPN2 enhances T cell anti-tumor immunity.

In Nature Communications on 27 July 2023 by Liang, S., Tran, E., et al.

The inhibition of protein tyrosine phosphatases 1B (PTP1B) and N2 (PTPN2) has emerged as an exciting approach for bolstering T cell anti-tumor immunity. ABBV-CLS-484 is a PTP1B/PTPN2 inhibitor in clinical trials for solid tumors. Here we have explored the therapeutic potential of a related small-molecule-inhibitor, Compound-182. We demonstrate that Compound-182 is a highly potent and selective active site competitive inhibitor of PTP1B and PTPN2 that enhances T cell recruitment and activation and represses the growth of tumors in mice, without promoting overt immune-related toxicities. The enhanced anti-tumor immunity in immunogenic tumors can be ascribed to the inhibition of PTP1B/PTPN2 in T cells, whereas in cold tumors, Compound-182 elicited direct effects on both tumor cells and T cells. Importantly, treatment with Compound-182 rendered otherwise resistant tumors sensitive to α-PD-1 therapy. Our findings establish the potential for small molecule inhibitors of PTP1B and PTPN2 to enhance anti-tumor immunity and combat cancer.
© 2023. The Author(s).

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb