Product Citations: 114

1 image found

Local Exosome Inhibition Potentiates Mild Photothermal Immunotherapy Against Breast Cancer.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 January 2025 by Chen, Q., Li, Y., et al.

Limited immune infiltration within the tumor microenvironment (TME) hampers the efficacy of immune checkpoint blockade (ICB) therapy. To enhance immune infiltration, mild photothermal therapy (PTT) is often combined with immunotherapy. However, the impact of mild PTT on the TME remains unclear. The bioinformatics analyses reveal that mild PTT amplifies immune cell infiltration and stimulates T-cell activity. Notably, it accelerates the release of tumor cell-derived exosomes (TEX) and upregulates PD-L1 expression on both tumor cells and TEX. Consequently, it is proposed that locally inhibiting TEX release is crucial for overcoming the adverse effects of mild PTT, thereby enhancing ICB therapy. Thus, a multi-stage drug delivery system is designed that concurrently delivers photosensitizers (reduced graphene oxide nanosheets, NRGO), anti-PD-L1 antibodies, and exosome inhibitors (sulfisoxazole). The system employs a temperature-sensitive lipid gel as the primary carrier, with NRGO serving as a secondary carrier that supports photothermal conversion and incorporation of sulfisoxazole. Importantly, controlled drug release is achieved using near-infrared radiation. The findings indicate that this local combination therapy remodels the immunosuppressive TME through exosome inhibition and enhanced immune cell infiltration, while also boosting T-cell activity to trigger systemic antitumor immunity, showcasing the remarkable efficacy of this combination strategy in eradicating cold tumors.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.

  • Cancer Research
  • Immunology and Microbiology

Tumor stage-driven disruption of NK cell maturation in human and murine tumors.

In IScience on 15 November 2024 by Russick, J., Torset, C., et al.

Natural killer (NK) cells play a pivotal role against cancer, both by direct killing of malignant cells and by promoting adaptive immune response though cytokine and chemokine secretion. In the lung tumor microenvironment (TME), NK cells are scarce and dysfunctional. By conducting single-cell transcriptomic analysis of lung tumors, and exploring pseudotime, we uncovered that the intratumoral maturation trajectory of NK cells is disrupted in a tumor stage-dependent manner, ultimately resulting in the selective exclusion of the cytotoxic subset. Using functional assays, we observed intratumoral NK cell death and a reduction in cytotoxic capacities depending on the tumor stage. Finally, our analyses of human public dataset on lung cancer corroborate these findings, revealing a parallel dysfunctional maturation process of NK cells during tumor progression. These results highlight additional mechanisms by which tumor cells escape from NK cell cytotoxicity, therefore paving the way for tailored therapeutic strategies.
© 2024 The Author(s).

  • Cancer Research

RIG-I is an intracellular checkpoint that limits CD8+ T-cell antitumour immunity.

In EMBO Molecular Medicine on 1 November 2024 by Duan, X., Hu, J., et al.

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor involved in innate immunity, but its role in adaptive immunity, specifically in the context of CD8+ T-cell antitumour immunity, remains unclear. Here, we demonstrate that RIG-I is upregulated in tumour-infiltrating CD8+ T cells, where it functions as an intracellular checkpoint to negatively regulate CD8+ T-cell function and limit antitumour immunity. Mechanistically, the upregulation of RIG-I in CD8+ T cells is induced by activated T cells, and directly inhibits the AKT/glycolysis signalling pathway. In addition, knocking out RIG-I enhances the efficacy of adoptively transferred T cells against solid tumours, and inhibiting RIG-I enhances the response to PD-1 blockade. Overall, our study identifies RIG-I as an intracellular checkpoint and a potential target for alleviating inhibitory constraints on T cells in cancer immunotherapy, either alone or in combination with an immune checkpoint inhibitor.
© 2024. The Author(s).

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

Dual targeting chimeric antigen receptor cells enhance antitumour activity by overcoming T cell exhaustion in pancreatic cancer.

In British Journal of Pharmacology on 1 November 2024 by Ruixin, S., Yifan, L., et al.

Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs.
In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo.
Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-β dependent manner.
The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.
© 2024 British Pharmacological Society.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
  • Pharmacology

CD8 positive T-cells decrease neurogenesis and induce anxiety-like behaviour following hepatitis B vaccination.

In Brain Communications on 10 October 2024 by Zhou, T., Gao, Y., et al.

Mounting evidence indicates the involvement of peripheral immunity in the regulation of brain function, influencing aspects such as neuronal development, emotion, and cognitive abilities. Previous studies from our laboratory have revealed that neonatal hepatitis B vaccination can downregulate hippocampal neurogenesis, synaptic plasticity and spatial learning memory. In the current post-epidemic era characterized by universal vaccination, understanding the impact of acquired immunity on neuronal function and neuropsychiatric disorders, along with exploring potential underlying mechanisms, becomes imperative. We employed hepatitis B vaccine-induced CD3 positive T cells in immunodeficient mice to investigate the key mechanisms through which T cell subsets modulate hippocampal neurogenesis and anxiety-like behaviours. Our data revealed that mice receiving hepatitis B vaccine-induced T cells exhibited heightened anxiety and decreased hippocampal cell proliferation compared to those receiving phosphate-buffered saline-T cells or wild-type mice. Importantly, these changes were predominantly mediated by infiltrated CD8+ T cells into the brain, rather than CD4+ T cells. Transcriptome profiling of CD8+ T cells unveiled that C-X-C motif chemokine receptor 6 positive (CXCR6+) CD8+ T cells were recruited into the brain through microglial and astrocyte-derived C-X-C motif chemokine ligand 16 (CXCL16). This recruitment process impaired neurogenesis and induced anxiety-like behaviour via tumour necrosis factor-α-dependent mechanisms. Our findings highlight the role of glial cell derived CXCL16 in mediating the recruitment of CXCR6+CD8+ T cell subsets into the brain. This mechanism represents a potential avenue for modulating hippocampal neurogenesis and emotion-related behaviours after hepatitis B vaccination.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.

  • Immunology and Microbiology
  • Neuroscience
View this product on CiteAb