Product Citations: 91

1 image found

Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade.

In Nature Communications on 14 October 2024 by Bergeron, P., Dos Santos, M., et al.

The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)

Ubiquitin-specific proteases (USPs), a large subset of more than 50 deubiquitinase proteins, have recently emerged as promising targets in cancer. However, their role in immune cell regulation, particularly in T cell activation, differentiation, and effector functions, remains largely unexplored.
We utilized a USP28 knockout mouse line to study the effect of USP28 on T cell activation and function, and its role in intestinal inflammation using the dextran sulfate sodium (DSS)-induced colitis model and a series of in vitro assays.
Our results show that USP28 exerts protective effects in acute intestinal inflammation. Mechanistically, USP28 knockout mice (USP28-/-) exhibited an increase in total T cells mainly due to an increased CD8+ T cell content. Additionally, USP28 deficiency resulted in early defects in T cell activation and functional changes. Specifically, we observed a reduced expression of IL17 and an increase in inducible regulatory T (iTreg) suppressive functions. Importantly, activated T cells lacking USP28 showed increased STAT5 phosphorylation. Consistent with these findings, these mice exhibited increased susceptibility to acute DSS-induced intestinal inflammation, accompanied by elevated IL22 cytokine levels.
Our findings demonstrate that USP28 is essential for T cell functionality and protects mice from acute DSS-induced colitis by regulating STAT5 signaling and IL22 production. As a T cell regulator, USP28 plays a crucial role in immune responses and intestinal health.
Copyright © 2024 Le Menn, Pikkarainen, Mennerich, Miroszewska, Kietzmann and Chen.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Severe influenza virus-infected patients have high systemic levels of Th1 cytokines (including IFN-γ). Intrapulmonary IFN-γ increases pulmonary IFN-γ-producing T lymphocytes through the CXCR3 pathway. Virus-infected mice lacking IP-10/CXCR3 demonstrate lower pulmonary neutrophilic inflammation. AMG487, an IP-10/CXCR3 antagonist, ameliorates virus-induced lung injury in vivo through decreasing viral loads. This study examined whether AMG487 could treat H1N1 virus-induced mouse illness through reducing viral loads or decreasing the number of lymphocytes or neutrophils.
Here, we studied the above-mentioned effects and underlying mechanisms in vivo.
H1N1 virus infection caused bad overall condition and pulmonary inflammation characterized by the infiltration of lymphocytes and neutrophils. From Day-5 to Day-10 post-virus infection, bad overall condition, pulmonary lymphocytes, and IFN-γ concentrations increased, while pulmonary H1N1 viral titres and neutrophils decreased. Both anti-IFN-γ and AMG487 alleviated virus infection-induced bad overall condition and pulmonary lymphocytic inflammation. Pulmonary neutrophilic inflammation was mitigated by AMG487 on Day-5 post-infection, but was not mitigated by AMG487 on Day-10 post-infection. H1N1 virus induced increases of IFN-γ, IP-10, and IFN-γ-producing lymphocytes and activation of the Jak2-Stat1 pathways in mouse lungs, which were inhibited by AMG487. Anti-IFN-γ decreased IFN-γ and IFN-γ-producing lymphocytes on Day-5 post-infection. AMG487 but not anti-IFN-γ decreased viral titres in mouse lung homogenates or BALF. Higher virus load did not increase pulmonary inflammation and IFN-γ concentrations when mice were treated with AMG487.
AMG487 may ameliorate H1N1 virus-induced pulmonary inflammation through decreasing IFN-γ-producing lymphocytes rather than reducing viral loads or neutrophils.
© 2024 British Pharmacological Society.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Pharmacology

Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

The trogocytosis of neutrophils on initial transplanted tumor in mice.

In IScience on 17 May 2024 by Zhu, M., Wang, S., et al.

The role of neutrophils in tumor initiation stage is rarely reported because of the lack of suitable models. We found that neutrophils recruited in early tumor nodules induced by subcutaneous inoculation of B16 melanoma cells were able to attack tumor cells by trogocytosis. The anti-tumor immunotherapy like peritoneal injection with TLR9 agonist CpG oligodeoxynucleotide combined with transforming growth factor β2 inhibitor TIO3 could increase the trogocytic neutrophils in the nodules, as well as CD8+ T cells, natural killer (NK) cells, and their interferon-γ production. Local use of Cxcl2 small interfering RNA significantly reduced the number of neutrophils and trogocytic neutrophils in tumor nodules, as well as CD8+ T and NK cells, and also enlarged the nodules. These results suggest that neutrophils recruited early to the inoculation site of tumor cells are conducive to the establishment of anti-tumor immune microenvironment. Our findings provide a useful model system for studying the effect of neutrophils on tumors and anti-tumor immunotherapy.
© 2024 The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
View this product on CiteAb