Product Citations: 123

Competition shapes the landscape of X-chromosome-linked genetic diversity.

In Nature Genetics on 1 August 2024 by Buenaventura, T., Bagci, H., et al.

X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.
© 2024. The Author(s).

  • Genetics

Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.

  • FC/FACS
  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

HLA-class II restricted TCR targeting human papillomavirus type 18 E7 induces solid tumor remission in mice.

In Nature Communications on 13 March 2024 by Long, J., Chen, X., et al.

T cell receptor (TCR)-engineered T cell therapy is a promising potential treatment for solid tumors, with preliminary efficacy demonstrated in clinical trials. However, obtaining clinically effective TCR molecules remains a major challenge. We have developed a strategy for cloning tumor-specific TCRs from long-term surviving patients who have responded to immunotherapy. Here, we report the identification of a TCR (10F04), which is human leukocyte antigen (HLA)-DRA/DRB1*09:01 restricted and human papillomavirus type 18 (HPV18) E784-98 specific, from a multiple antigens stimulating cellular therapy (MASCT) benefited metastatic cervical cancer patient. Upon transduction into human T cells, the 10F04 TCR demonstrated robust antitumor activity in both in vitro and in vivo models. Notably, the TCR effectively redirected both CD4+ and CD8+ T cells to specifically recognize tumor cells and induced multiple cytokine secretion along with durable antitumor activity and outstanding safety profiles. As a result, this TCR is currently being investigated in a phase I clinical trial for treating HPV18-positive cancers. This study provides an approach for developing safe and effective TCR-T therapies, while underscoring the potential of HLA class II-restricted TCR-T therapy as a cancer treatment.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research

B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4.

In Nature on 1 March 2024 by Maisam Afzali, A., Nirschl, L., et al.

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
© 2024. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Gut microbial-mediated polyphenol metabolism is restrained by parasitic whipworm infection and associated with altered immune function in mice

Preprint on BioRxiv : the Preprint Server for Biology on 6 February 2024 by Andersen-Civil, A. I. S., Arora, P., et al.

Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus , and induced a type-1, interferon-driven mucosal immune response during infection with the large intestinal whipworm Trichuris muris. PAC also induced alterations in mesenteric lymph node T-cell populations that were dependent on infection model, with a Th2/Treg bias during H. polygyrus infection, and a Th1 bias during T. muris infection. In the absence of infection, PAC intake promoted the expansion of Turicibacter sp. within the gut microbiota, increased faecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the caecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the caecum dwelling T. muris ), and infection may abrogate the beneficial effects of health-promoting phytochemicals.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb