Product Citations: 14

Ag-inexperienced memory-like T (AIMT) cells are functionally unique T cells, representing one of the two largest subsets of murine CD8+ T cells. However, differences between laboratory inbred strains, insufficient data from germ-free mice, a complete lack of data from feral mice, and an unclear relationship between AIMT cells formation during aging represent major barriers for better understanding of their biology. We performed a thorough characterization of AIMT cells from mice of different genetic background, age, and hygienic status by flow cytometry and multiomics approaches, including analyses of gene expression, TCR repertoire, and microbial colonization. Our data showed that AIMT cells are steadily present in mice, independent of their genetic background and hygienic status. Despite differences in their gene expression profiles, young and aged AIMT cells originate from identical clones. We identified that CD122 discriminates two major subsets of AIMT cells in a strain-independent manner. Whereas thymic CD122LOW AIMT cells (innate memory) prevail only in young animals with high thymic IL-4 production, peripheral CD122HIGH AIMT cells (virtual memory) dominate in aged mice. Cohousing with feral mice changed the bacterial colonization of laboratory strains but had only minimal effects on the CD8+ T cell compartment, including AIMT cells.
Copyright © 2021 by The American Association of Immunologists, Inc.

  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy.

In The Journal of Experimental Medicine on 7 December 2020 by Oda, S. K., Anderson, K. G., et al.

Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor-positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.
© 2020 Oda et al.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Chronic infection with Toxoplasma gondii induces a potent resistance against reinfection, and IFN-γ production by CD8(+) T cells is crucial for the protective immunity. However, the molecular mechanisms that regulate the secondary response remain to be elucidated. In the current study, we examined the role of IL-2 in IFN-γ production by CD8(+) immune T cells in their secondary responses using T. gondii-specific CD8(+) T cell hybridomas and splenic CD8(+) immune T cells from chronically infected mice. The majority (92%) of CD8(+) T cell hybridomas produced large amounts of IFN-γ only when a low amount (0.5 ng/ml) of exogenous IL-2 was provided in combination with T. gondii Ags. Inhibition of cell proliferation by mitomycin C did not affect the enhancing effect of IL-2 on the IFN-γ production, and significant increases in transcription factor T-bet expression were associated with the IL-2-mediated IFN-γ amplification. Splenic CD8(+) immune T cells produced similar low levels of IL-2 in the secondary response to T. gondii, and a blocking of IL-2 signaling by anti-IL-2Rα Ab or inhibitors of JAK1 and JAK3 significantly reduced IFN-γ production of the T cells. This IL-2-mediated upregulation of IFN-γ production was observed in mitomycin C-treated CD8(+) immune T cells, thus independent from their cell division. Therefore, endogenous IL-2 produced by CD8(+) immune T cells can play an important autocrine-enhancing role on their IFN-γ production in the secondary responses to T. gondii, suggesting an importance of induction of CD8(+) immune T cells with an appropriate IL-2 production for vaccine development.

  • Immunology and Microbiology

Sustained intratumoral delivery of IL-12 and GM-CSF can overcome tumor immune suppression and promote T cell-dependent eradication of established disease in murine tumor models. However, the antitumor effector response is transient and rapidly followed by a T suppressor cell rebound. The mechanisms that control the switch from an effector to a regulatory response in this model have not been defined. Because dendritic cells (DC) can mediate both effector and suppressor T cell priming, DC activity was monitored in the tumors and the tumor-draining lymph nodes (TDLN) of IL-12/GM-CSF-treated mice. The studies demonstrated that therapy promoted the recruitment of immunogenic DC (iDC) to tumors with subsequent migration to the TDLN within 24-48 h of treatment. Longer-term monitoring revealed that iDC converted to an IDO-positive tolerogenic phenotype in the TDLN between days 2 and 7. Specifically, day 7 DC lost the ability to prime CD8(+) T cells but preferentially induced CD4(+)Foxp3(+) T cells. The functional switch was reversible, as inhibition of IDO with 1-methyl tryptophan restored immunogenic function to tolerogenic DC. All posttherapy immunological activity was strictly associated with conventional myeloid DC, and no functional changes were observed in the plasmacytoid DC subset throughout treatment. Importantly, the initial recruitment and activation of iDC as well as the subsequent switch to tolerogenic activity were both driven by IFN-γ, revealing the dichotomous role of this cytokine in regulating IL-12-mediated antitumor T cell immunity.

  • Immunology and Microbiology

Regulation of cytokine production by virus-specific CD8 T cells in the lungs.

In Journal of Virology on 1 August 2008 by Fulton, R. B., Olson, M. R., et al.

Inflammation and the elimination of infected host cells during an immune response often cause local tissue injury and immunopathology, which can disrupt the normal functions of tissues such as the lung. Here, we show that both virus-induced inflammation and the host tissue environment combine to influence the capacity of virus-specific CD4 and CD8 T cells to produce cytokines in various tissues. Decreased production of cytokines, such as IFN-gamma and TNF-alpha, by antigen-specific T cells is more pronounced in peripheral tissues, such as the lung and kidney, than in secondary lymphoid organs, such as the spleen or lymph nodes. We also demonstrate that tissues regulate cytokine production by memory T cells independently of virus infection, as memory T cells that traffic into the lungs of naïve animals exhibit a reduced ability to produce cytokines following direct ex vivo peptide stimulation. Furthermore, we show that cytokine production by antigen-specific memory CD4 and CD8 T cells isolated from the lung parenchyma can be rescued by stimulation with exogenous peptide-pulsed antigen-presenting cells. Our results suggest that the regulation of T-cell cytokine production by peripheral tissues may serve as an important mechanism to prevent immunopathology and preserve normal tissue function.

  • Immunology and Microbiology
View this product on CiteAb