Product Citations: 10

The ataxia telangiectasia mutated and cyclin D3 proteins cooperate to help enforce TCRβ and IgH allelic exclusion.

In The Journal of Immunology on 15 September 2014 by Steinel, N. C., Fisher, M. R., et al.

Coordination of V rearrangements between loci on homologous chromosomes is critical for Ig and TCR allelic exclusion. The Ataxia Telangietasia mutated (ATM) protein kinase promotes DNA repair and activates checkpoints to suppress aberrant Ig and TCR rearrangements. In response to RAG cleavage of Igκ loci, ATM inhibits RAG expression and suppresses further Vκ-to-Jκ rearrangements to enforce Igκ allelic exclusion. Because V recombination between alleles is more strictly regulated for TCRβ and IgH loci, we evaluated the ability of ATM to restrict biallelic expression and V-to-DJ recombination of TCRβ and IgH genes. We detected greater frequencies of lymphocytes with biallelic expression or aberrant V-to-DJ rearrangement of TCRβ or IgH loci in mice lacking ATM. A preassembled DJβ complex that decreases the number of TCRβ rearrangements needed for a productive TCRβ gene further increased frequencies of ATM-deficient cells with biallelic TCRβ expression. IgH and TCRβ proteins drive proliferation of prolymphocytes through cyclin D3 (Ccnd3), which also inhibits VH transcription. We show that inactivation of Ccnd3 leads to increased frequencies of lymphocytes with biallelic expression of IgH or TCRβ genes. We also show that Ccnd3 inactivation cooperates with ATM deficiency to increase the frequencies of cells with biallelic TCRβ or IgH expression while decreasing the frequency of ATM-deficient lymphocytes with aberrant V-to-DJ recombination. Our data demonstrate that core components of the DNA damage response and cell cycle machinery cooperate to help enforce IgH and TCRβ allelic exclusion and indicate that control of V-to-DJ rearrangements between alleles is important to maintain genomic stability.
Copyright © 2014 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

The RAG proteins are comprised of core endonuclease domains and noncore regions that modulate endonuclease activity. Mutation or deletion of noncore RAG regions in humans causes immunodeficiency and altered TCR repertoire, and mice expressing core but not full-length Rag1 (Rag1(C/C)) or Rag2 (Rag2(C/C)) exhibit lymphopenia, reflecting impaired V(D)J recombination and lymphocyte development. Rag1(C/C) mice display reduced D-to-J and V-to-DJ rearrangements of TCRβ and IgH loci, whereas Rag2(C/C) mice show decreased V-to-DJ rearrangements and altered Vβ/VH repertoire. Because Vβs/VHs only recombine to DJ complexes, the Rag1(C/C) phenotype could reflect roles for noncore RAG1 regions in promoting recombination during only the D-to-J step or during both steps. In this study, we demonstrate that a preassembled TCRβ gene, but not a preassembled DβJβ complex or the prosurvival BCL2 protein, completely rescues αβ T cell development in Rag1(C/C) mice. We find that Rag1(C/C) mice exhibit altered Vβ utilization in Vβ-to-DJβ rearrangements, increased usage of 3'Jα gene segments in Vα-to-Jα rearrangements, and abnormal changes in Vβ repertoire during αβ TCR selection. Inefficient Vβ/VH recombination signal sequences (RSSs) have been hypothesized to cause impaired V-to-DJ recombination on the background of a defective recombinase as in core-Rag mice. We show that replacement of the Vβ14 RSS with a more efficient RSS increases Vβ14 recombination and rescues αβ T cell development in Rag1(C/C) mice. Our data indicate that noncore RAG1 regions establish a diverse TCR repertoire by overcoming Vβ RSS inefficiency to promote Vβ recombination and αβ T cell development, and by modulating TCRβ and TCRα gene segment utilization.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

A public T cell receptor recognized by a monoclonal antibody specific for the D-J junction of the β-chain.

In Scandinavian Journal of Immunology on 1 October 2013 by Frigstad, T., Løset, G. Å., et al.

It is becoming increasingly clear that T cell responses against many antigens are dominated by public α/β T cell receptors (TCRs) with restricted heterogeneity. Because expression of public TCRs may be related to resistance, or predisposition to diseases, it is relevant to measure their frequencies. Although staining with tetrameric peptide/major histocompatibility complex (pMHC) molecules gives information about specificity, it does not give information about the TCR composition of the individual T cells that stain. Moreover, next-generation sequencing of TCR does not yield information on pairing of α- and β-chains in single T cells. In an effort to overcome these limitations, we have here investigated the possibility of raising a monoclonal antibody (moAb) that recognizes a public TCR. As a model system, we have used T cells responding to the 91-101 CDR3 peptide of an Ig L-chain (λ2³¹⁵), presented by the MHC class II molecule I-E(d). The CD4⁺ T cell responses against this pMHC are dominated by a receptor composed of Vα3Jα1;Vβ6DβJβ1.1. Even the V(D)J junctions are to a large extent shared between T cell clones derived from different BALB/c mice. We here describe a murine moAb (AB10) of B10.D2 origin that recognizes this public TCR, while binding to peripheral T cells is negligible. Binding of the moAb is abrogated by introduction of two Gly residues in the D-J junction of the CDR3 of the β-chain. A model for the public TCR determinant is presented.
© 2013 John Wiley & Sons Ltd.

  • Immunology and Microbiology

Requirement for dicer in survival of proliferating thymocytes experiencing DNA double-strand breaks.

In The Journal of Immunology on 1 April 2013 by Brady, B. L., Rupp, L. J., et al.

The Dicer nuclease generates small RNAs that regulate diverse biological processes through posttranscriptional gene repression and epigenetic silencing of transcription and recombination. Dicer-deficient cells exhibit impaired differentiation, activity, proliferation, and survival. Dicer inactivation in developing mouse lymphocytes impairs their proliferation and survival and alters Ag receptor gene repertoires for largely undefined reasons. To elucidate functions of Dicer in lymphocyte development and Ag receptor locus transcription and recombination, we analyzed mice with conditional Dicer deletion in thymocytes containing unrearranged or prerearranged TCRβ loci. Expression of either a preassembled functional TCRβ gene (Vβ1(NT)) or the prosurvival BCL2 protein inhibited death and partially rescued proliferative expansion of Dicer-deficient thymocytes. Notably, combined expression of Vβ1(NT) and BCL2 completely rescued proliferative expansion of Dicer-deficient thymocytes and revealed that Dicer promotes survival of cells attempting TCRβ recombination. Finally, inclusion of an endogenous preassembled DJβ complex that enhances Vβ recombination increased death and impaired proliferative expansion of Dicer-deficient thymocytes. These data demonstrate a critical role for Dicer in promoting survival of thymocytes experiencing DNA double-strand breaks (DSBs) during TCRβ recombination. Because DSBs are common and ubiquitous in cells, our findings indicate that impaired cellular survival in response to DSBs should be considered when interpreting Dicer-deficient phenotypes.

  • FC/FACS
  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

The parasitic gastrointestinal nematode Nippostrongylus brasiliensis induces massive expansion of T helper type 2 (Th2) cells in the lung and small intestine. Th2 cells are a major source of interleukin-4 and interleukin-13, two cytokines that appear essential for rapid worm expulsion. It is unclear whether all Th2 cells induced during infection are pathogen-specific because Th2 cells might also be induced by parasite-derived superantigens or cytokine-mediated bystander activation. Bystander Th2 polarization could explain the largely unspecific B-cell response during primary infection. Furthermore, it is not known whether protective immunity depends on a polyclonal repertoire of T-cell receptor (TCR) specificities. To address these unresolved issues, we performed adoptive transfer experiments and analysed the TCR-Vβ repertoire before and after infection of mice with the helminth N. brasiliensis. The results demonstrate that all Th2 cells were generated by antigen-specific rather than superantigen-driven or cytokine-driven activation. Furthermore, we show that worm expulsion was impaired in mice with a limited repertoire of TCR specificities, indicating that a polyclonal T-cell response is required for protective immunity.
© 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.

  • Immunology and Microbiology
View this product on CiteAb