Product Citations: 11

Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Gap junctions at the dendritic cell-T cell interface are key elements for antigen-dependent T cell activation.

In The Journal of Immunology on 1 July 2009 by Elgueta, R., Tobar, J. A., et al.

The acquired immune response begins with Ag presentation by dendritic cells (DCs) to naive T cells in a heterocellular cell-cell contact-dependent process. Although both DCs and T cells are known to express connexin43, a gap junction protein subunit, the role of connexin43 on the initiation of T cell responses remains to be elucidated. In the present work, we report the formation of gap junctions between DCs and T cells and their role on T cell activation during Ag presentation by DCs. In cocultures of DCs and T cells, Lucifer yellow microinjected into DCs is transferred to adjacent transgenic CD4(+) T cells, only if the specific antigenic peptide was present at least during the first 24 h of cocultures. This dye transfer was sensitive to gap junction blockers, such as oleamide, and small peptides containing the extracellular loop sequences of conexin. Furthermore, in this system, gap junction blockers drastically reduced T cell activation as reflected by lower proliferation, CD69 expression, and IL-2 secretion. This lower T cell activation produced by gap junction blockers was not due to a lower expression of CD80, CD86, CD40, and MHC-II on DCs. Furthermore, gap junction blocker did not affect polyclonal activation of T cell induced with anti-CD3 plus anti-CD28 Abs in the absence of DCs. These results strongly suggest that functional gap junctions assemble at the interface between DCs and T cells during Ag presentation and that they play an essential role in T cell activation.

  • Immunology and Microbiology

Adaptive tolerance is the physiologic down-regulation of T cell responsiveness in the face of persistent antigenic stimulation. In this study, we examined the role of CTLA-4 in this process using CTLA-4-deficient and wild-type TCR transgenic, Rag2(-/-), CD4(+) T cells transferred into a T cell-deficient, Ag-expressing host. Surprisingly, we found that the tuning process of adoptively transferred T cells could be induced and the hyporesponsive state maintained in the absence of CTLA-4. Furthermore, movement to a deeper state of anergy following restimulation in vivo in a second Ag-bearing host was also unaffected. In contrast, CTLA-4 profoundly inhibited late T cell expansion in vivo following both primary and secondary transfers, and curtailed IL-2 and IFN-gamma production. Removal of this braking function in CTLA-4-deficient mice following Ag stimulation may explain their lymphoproliferative dysregulation.

  • Immunology and Microbiology

NK T cells are a unique lymphocyte population that have developmental requirements distinct from conventional T cells. Mice lacking the tyrosine kinase Fyn have 5- to 10-fold fewer mature NK T cells. This study shows that Fyn-deficient mice have decreased numbers of NK1.1(-) NK T cell progenitors as well. 5-Bromo-2'-deoxyuridine-labeling studies indicate that the NK T cells remaining in fyn(-/-) mice exhibit a similar turnover rate as wild-type cells. The fyn(-/-) NK T cells respond to alpha-galactosylceramide, a ligand recognized by NK T cells, and produce cytokines, but have depressed proliferative capacity. Transgenic expression of the NK T cell-specific TCR alpha-chain Valpha14Jalpha18 leads to a complete restoration of NK T cell numbers in fyn(-/-) mice. Together, these results suggest that Fyn may have a role before alpha-chain rearrangement rather than for positive selection or the peripheral upkeep of cell number. NK T cells can activate other lymphoid lineages via cytokine secretion. These secondary responses are impaired in Fyn-deficient mice, but occur normally in fyn mutants expressing the Valpha14Jalpha18 transgene. Because this transgene restores NK T cell numbers, the lack of secondary lymphocyte activation in the fyn-mutant mice is due to the decreased numbers of NK T cells present in the mutant, rather than an intrinsic defect in the ability of the other fyn(-/-) lymphoid populations to respond.

  • Immunology and Microbiology

Antigen challenge leads to in vivo activation and elimination of highly polarized TH1 memory T cells.

In Proceedings of the National Academy of Sciences of the United States of America on 30 April 2002 by Hayashi, N., Liu, D., et al.

TH1 memory T cells derived from T cell receptor transgenic mice, in which the T cell antigen receptor is specific for a cytochrome C peptide in association with I-E(k), were transferred into normal B10.A mice and allowed to adopt a resting phenotype. When challenged, 30-60 days after transfer, with i.v. cytochrome C, the transgenic cells rapidly became activated, expressed mRNA for IFNgamma, and began to divide. However, after 48 h, the frequency of the cells fell progressively, reaching levels only slightly above the limit of detection by day 8 and thereafter remain depressed for up to 90 days. The remaining cells were anergic as shown by limitation in proliferation and IFNgamma production in response to in vitro antigen stimulation. Even if challenged with antigen emulsified in complete Freund's adjuvant, the overall pattern was similar, except that in the draining lymph nodes, the surviving antigen-specific cells were not anergic, although spleen cells were still strikingly anergic. Thus, antigenic challenge of mice possessing resting memory TH1 CD4 T cells leads to the unanticipated loss of most of the specific cells and an apparent depletion rather than enhancement of immunologic memory.

  • Immunology and Microbiology
View this product on CiteAb