Product Citations: 31

Lactylated Apolipoprotein C-II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 October 2024 by Chen, J., Zhao, D., et al.

Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism. The role of non-histone Kla in tumor immune microenvironment and immunotherapy remains to be clarified. Here, global lactylome profiling and metabolomic analyses of samples from patients with NSCLC is conducted. By combining multi-omics analysis with in vitro and in vivo validation, that intracellular lactate promotes extracellular lipolysis through lactyl-APOC2 is revealed. Mechanistically, lactate enhances APOC2 lactylation at K70, stabilizing it and resulting in FFA release, regulatory T cell accumulation, immunotherapy resistance, and metastasis. Moreover, the anti-APOC2K70-lac antibody that sensitized anti-PD-1 therapy in vivo is developed. This findings highlight the potential of anti lactyl-APOC2-K70 approach as a new combination therapy for sensitizing immunotherapeutic responses.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.

  • Immunology and Microbiology

FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis.

In Cell Reports Medicine on 19 December 2023 by Régnier, P., Vétillard, M., et al.

FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

ERK Inhibition Promotes Engraftment of Allografts by Reprogramming T-Cell Metabolism.

In Advanced Science (Weinheim, Baden-Wurttemberg, Germany) on 1 June 2023 by Tan, X., Qi, C., et al.

Extracellular regulated protein kinases (ERK) signaling is a master regulator of cell behavior, life, and fate. Although ERK pathway is shown to be involved in T-cell activation, little is known about its role in the development of allograft rejection. Here, it is reported that ERK signaling pathway is activated in allograft-infiltrating T cells. On the basis of surface plasmon resonance technology, lycorine is identified as an ERK-specific inhibitor. ERK inhibition by lycorine significantly prolongs allograft survival in a stringent mouse cardiac allotransplant model. As compared to untreated mice, lycorine-treated mice show a decrease in the number and activation of allograft-infiltrated T cells. It is further confirmed that lycorine-treated mouse and human T cells are less responsive to stimulation in vitro, as indicated by their low proliferative rates and decreased cytokine production. Mechanistic studies reveal that T cells treated with lycorine exhibit mitochondrial dysfunction, resulting in metabolic reprogramming upon stimulation. Transcriptome analysis of lycorine-treated T cells reveals an enrichment in a series of downregulated terms related to immune response, the mitogen-activated protein kinase cascade, and metabolic processes. These findings offer new insights into the development of immunosuppressive agents by targeting the ERK pathway involved in T-cell activation and allograft rejection.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy.

In Nature Communications on 19 May 2023 by Xiao, X., Shi, J., et al.

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.
© 2023. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Transforming growth factor β2 (TGF-β2), also known as glioma-derived T-cell suppressor factor, is associated with the impairment of tumor immune surveillance. Therefore, blocking TGF-β2 signaling probably be a feasible strategy to develop a novel type of adjuvant for glioma vaccines to enhance antitumor immunity.
A TGF-β2 inhibitory oligodeoxynucleotide, TIO3, was designed with sequences complementary to the 3' untranslated region of TGF-β2 mRNA. The expression of TGF-β2 and MHC-I was detected by qPCR, western and flow cytometry in vitro. All the percentage and activation of immune cells were detected by flow cytometry. Subsequently, TIO3 was formulated with Glioma cell lysate (TCL) and investigated for its antitumor effects in GL261 murine glioma prophylactic and therapeutic models.
TIO3 could efficiently downregulate the expression of TGF-β2 while increase the MHC-I's expression in GL261 and U251 glioma cells in vitro. Meanwhile, TIO3 was detected in mice CD4+ T, CD8+ T, B and Ly6G+ cells from lymph nodes after 24 hours incubation. Moreover, TCL+TIO3 vaccination significantly prolonged the survival of primary glioma-bearing mice and protected these mice from glioma re-challenge in vivo. Mechanistically, TCL+TIO3 formulation strongly evoke the antitumor immune responses. 1) TCL+TIO3 significantly increased the composition of CD4+ and CD8+ T cells from draining lymph nodes while promoted their IFN-γ production and reduced the expression of TGF-β2 and PD1. 2) TCL+TIO3 activated the NK cells with the elevation of CD69 or NKG2D expression and PD1 reduction. 3) TCL+TIO3 increased the glioma-specific lysis CTLs from spleen. 4) TCL+TIO3 downregulated PD-L1 expression in glioma tissues and in Ly6G+ cells among glioma-infiltrating immune cells.
TIO3 is a promising adjuvant for enhancing TCL-based vaccines to produce a more vigorous and long-lasting antitumor response by interfering with TGF-β2 expression.
Copyright © 2023 Tu, Wang, Yang, Sun, Yao, Zhang, Zhang, Wang, Yu and Yang.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb