Product Citations: 11

Conserved role of hnRNPL in alternative splicing of epigenetic modifiers enables B cell activation.

In EMBO Reports on 1 June 2024 by Subramani, P. G., Fraszczak, J., et al.

The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.
© 2024. The Author(s).

  • Genetics
  • Immunology and Microbiology

The phosphatase DUSP22 inhibits UBR2-mediated K63-ubiquitination and activation of Lck downstream of TCR signalling.

In Nature Communications on 15 January 2024 by Shih, Y. C., Chen, H. F., et al.

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.
© 2024. The Author(s).

B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity.

In Nature on 1 November 2021 by Zhang, B., Vogelzang, A., et al.

Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.
© 2021. The Author(s).

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Exposure of bone marrow to genotoxic stress such as ionizing radiation (IR) results in a rapid decline of peripheral blood cells and stimulates entry of the normally quiescent hematopoietic stem cells (HSCs) into the cell cycle to reconstitute the hematopoietic system. While several protocols have employed flow cytometry analysis of bone marrow cells to study changes in specific cell populations with respect to cell cycle proliferation and/or expression of γ-H2AX, a marker of DNA damage, these parameters were examined in separate panels. Here, we describe a flow cytometry-based method specifically designed to examine cell cycle distribution using Ki-67 and FXCycle violet in combination with γ-H2AX in HSCs and hematopoietic progenitor cells (HPCs) within the same sample. This method is very useful, particularly in studies involving genotoxic stresses such as IR, which substantially reduce the absolute numbers of HSCs and HPCs available for staining. Additionally, we describe several important considerations for the analysis of markers of HSCs in irradiated versus unirradiated samples. Examples include the use of fluorescence minus one (FMO) controls, the gating strategy for markers whose expression is typically impacted by IR such as Sca1, tips for staining of intracellular antigens like Ki67, and ensuring the detection of signal from at least 500 events in each gate to ensure robustness of the results. © 2021 Wiley Periodicals LLC. Basic Protocol: Immunostaining protocol for bone marrow mononuclear cells using a multi-fluorophore panel.
© 2021 Wiley Periodicals LLC.

  • Genetics
  • Stem Cells and Developmental Biology

Cerebral malaria is a deadly complication of Plasmodium infection and involves blood brain barrier (BBB) disruption following infiltration of white blood cells. During experimental cerebral malaria (ECM), mice inoculated with Plasmodium berghei ANKA-infected red blood cells develop a fatal CM-like disease caused by CD8+ T cell-mediated pathology. We found that treatment with interleukin-15 complex (IL-15C) prevented ECM, whereas IL-2C treatment had no effect. IL-15C-expanded natural killer (NK) cells were necessary and sufficient for protection against ECM. IL-15C treatment also decreased CD8+ T cell activation in the brain and prevented BBB breakdown without influencing parasite load. IL-15C induced NK cells to express IL-10, which was required for IL-15C-mediated protection against ECM. Finally, we show that ALT-803, a modified human IL-15C, mediates similar induction of IL-10 in NK cells and protection against ECM. These data identify a regulatory role for cytokine-stimulated NK cells in the prevention of a pathogenic immune response.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb