Product Citations: 12

Although ACVR2A mutations are prevalent in non-viral hepatocellular carcinomas (HCCs), the underlying mechanism remains unelucidated. Our molecular investigation reveals that ACVR2A impairment induces hyperglycolysis through the inactivation of the SMAD signaling pathway. Using syngeneic transplantation models and human clinical samples, we clarify that ACVR2A-deficient HCC cells produce and secrete lactate via the upregulation of lactate dehydrogenase A (LDHA) and monocarboxylate transporter 4 (MCT4) expression levels, which promotes regulatory T (Treg) cell accumulation and then acquires resistance to immune checkpoint inhibitors. Remarkably, genetic knockdown and pharmacological inhibition of MCT4 ameliorate the high-lactate milieu in ACVR2A-deficient HCC, resulting in the suppression of intratumoral Treg cell recruitment and the restoration of the sensitivity to PD-1 blockade. These findings furnish compelling evidence that lactate attenuates anti-tumor immunity and that therapeutics targeting this pathway present a promising strategy for mitigating immunotherapy resistance in ACVR2A-deficient HCC.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cancer Research

DUSP6 deletion protects mice and reduces disease severity in autoimmune arthritis.

In IScience on 21 June 2024 by Laragione, T., Harris, C., et al.

Receptor tyrosine kinases (RTKs) have an important role in arthritis severity and in models of rheumatoid arthritis (RA), but their regulation is not fully understood. The dual specificity phosphatase 6 (DUSP6) has been implicated in the regulation of RTK signaling, but never in the context of arthritis and autoimmunity. We used the KRN serum-induced arthritis (KSIA) model of RA and showed that DUSP6-/- mice were protected and had a 50% lower maximum arthritis score (p = 0.006) and reduced joint damage than C57BL/6 DUSP6+/+ controls. Serum levels of interleukin (IL) 10 were significantly increased (>2-fold), and IL6 decreased in DUSP6-/- mice. DUSP6-/- mice had increased numbers of IL10+ cells including Tr1 regulatory cells (p < 0.01). Introduction of the IL10-/- into DUSP6-/- (double knockout [KO]) reversed the DUSP6-/- protection. In conclusion, this study reports a pro-arthritic role for DUSP6. This discovery has the potential to generate a previously unknown target for therapies for RA and inflammatory diseases.
© 2024 The Author(s).

  • Immunology and Microbiology

All-trans-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8+ T cell depletion antagonized ATRA's anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA's anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice-a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4+ T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4+ more than CD8+ T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.
© 2023. Springer Nature Limited.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo.

In Journal of Cellular Physiology on 1 June 2020 by Thomas, A. M., Dong, Y., et al.

Dendritic cells are key players in regulating immunity. These cells both activate and inhibit the immune response depending on their cellular environment. Their response to hyperglycemia, a condition common amongst diabetics wherein glucose is abnormally elevated, remains to be elucidated. In this study, the phenotype and immune response of dendritic cells exposed to hyperglycemia were characterized in vitro and in vivo using the streptozotocin-induced diabetes model. Dendritic cells were shown to be sensitive to hyperglycemia both during and after differentiation from bone marrow precursor cells. Dendritic cell behavior under hyperglycemic conditions was found to vary by phenotype, among which, tolerogenic dendritic cells were particularly sensitive. Expression of the costimulatory molecule CD86 was found to reliably increase when dendritic cells were exposed to hyperglycemia. Additionally, hydrogel-based delivery of the anti-inflammatory molecule interleukin-10 was shown to partially inhibit these effects in vivo.
© 2019 Wiley Periodicals, Inc.

  • Endocrinology and Physiology
  • Immunology and Microbiology

The interplay between implants and the recipient immune environment is key to the long-term effectiveness of bone tissue engineering. In this study, we aimed to investigate the mutual effects between macrophages and cartilage templates in the process of subcutaneous osteogenesis. Primary mice bone marrow derived mesenchymal stem cells (BMSCs) were seeded into gelatin sponge and chondrogenically cultured for 4 weeks in vitro to form cartilage templates. The constructs were then implanted subcutaneously in monocyte-depleted mice or normal C57BL/6 mice. Implants harvested at two months showed inferior osteogenic quality in monocyte-depleted mice compared with that of normal mice. In normal mice, the cartilage templates recruited a high ratio of alternatively activated macrophages (CAM or M2) to classically activated macrophages (AAM or M1), compared with empty sponge. In vitro co-culture assay of macrophages with cartilage templates also showed that the cartilage templates polarized macrophages to the M2 phenotype and that these effects were even stronger than those of primary BMSCs. In turn, the co-culture of polarized macrophages with cartilage templates showed that compared to M0 or M2, M1 significantly increased the expressions of osteogenic and angiogenic markers of cartilage templates. These data suggested that macrophages seem to be indispensable in the osteogenesis of cartilage templates and that cartilage templates have a favorable immunomodulatory ability to polarize macrophages to the M2 phenotype. M1 was the contributing phenotype of macrophages that promoted the osteogenesis and angiogenesis of cartilage templates. Macrophages and cartilage templates cooperate to achieve endochondral bone formation.
This journal is © The Royal Society of Chemistry.

  • FC/FACS
  • Mus musculus (House mouse)
View this product on CiteAb