Product Citations: 4

POGZ promotes homology-directed DNA repair in an HP1-dependent manner.

In EMBO Reports on 5 January 2022 by Heath, J., Cheyou, E. S., et al.

The heterochromatin protein HP1 plays a central role in the maintenance of genome stability but little is known about how HP1 is controlled. Here, we show that the zinc finger protein POGZ promotes the presence of HP1 at DNA double-strand breaks (DSBs) in human cells. POGZ depletion delays the resolution of DSBs and sensitizes cells to different DNA-damaging agents, including cisplatin and talazoparib. Mechanistically, POGZ promotes homology-directed DNA repair by retaining the BRCA1/BARD1 complex at DSBs in an HP1-dependent manner. In vivo CRISPR inactivation of Pogz is embryonically lethal. Pogz haploinsufficiency (Pogz+ /delta) results in developmental delay, impaired intellectual abilities, hyperactive behaviour and a compromised humoral immune response in mice, recapitulating the main clinical features of the White Sutton syndrome (WHSUS). Pogz+ /delta mice are further radiosensitive and accumulate DSBs in diverse tissues, including the spleen and brain. Altogether, our findings identify POGZ as an important player in homology-directed DNA repair both in vitro and in vivo.
© 2021 The Authors.

  • Genetics

Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome.

In The Journal of Clinical Investigation on 1 June 2009 by Nijnik, A., Dawson, S., et al.

Hypomorphic mutations in DNA ligase IV (LIG4) cause a human syndrome of immunodeficiency, radiosensitivity, and growth retardation due to defective DNA repair by the nonhomologous end-joining (NHEJ) pathway. Lig4-null mice are embryonic lethal, and better mouse models are needed to study human LigIV syndrome. We recently identified a viable mouse strain with a Y288C hypomorphic mutation in the Lig4 gene. Lig4Y288C mice exhibit a greater than 10-fold reduction of LigIV activity in vivo and recapitulate the immunodeficiency and growth retardation seen in human patients. Here, we have demonstrated that the Lig4Y288C mutation leads to multiple defects in lymphocyte development and function, including impaired V(D)J recombination, peripheral lymphocyte survival and proliferation, and B cell class switch recombination. We also highlight a high incidence of thymic tumors in the Lig4Y288C mice, suggesting that wild-type LigIV protects against malignant transformation. These findings provide explanations for the complex lymphoid phenotype of human LigIV syndrome.

  • Genetics

Reduced Ig class switch in aged mice correlates with decreased E47 and activation-induced cytidine deaminase.

In The Journal of Immunology on 15 February 2004 by Frasca, D., Van der Put, E., et al.

The capacity to class switch the IgH chain is critical to the effectiveness of humoral immune responses. We show that in vitro-stimulated splenic B cells from senescent mice are deficient in production of multiple class switch isotypes (IgG1, G2a, G3, and E), class switch recombination (CSR), and induction of the E2A-encoded transcription factor E47. E47 has previously been shown to be required for CSR, at least in part via expression of the activation-induced cytidine deaminase. Our studies show that impaired induction of E47, and subsequently activation-induced cytidine deaminase, contribute to poor CSR and production of secondary isotypes in senescence.

  • Genetics
  • Immunology and Microbiology

Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane.

In Journal of the American Society of Nephrology : JASN on 1 August 2003 by De Vriese, A. S., Flyvbjerg, A., et al.

The peritoneal membrane of long-term peritoneal dialysis patients is characterized by a loss of ultrafiltration capacity, associated morphologically with submesothelial fibrosis and neoangiogenesis. Exposure to high glucose concentrations in peritoneal dialysate and the resultant advanced glycation end-products (AGE) accumulation have been implicated in the development of these changes, but their exact pathophysiological role is unknown. We examined the effect of the interaction of AGE with one of their receptors (i.e., RAGE) on the function and structure of the peritoneum exposed to high ambient glucose concentrations. Streptozotocin-induced diabetic rats and control rats were treated during 6 wk with either neutralizing monoclonal anti-RAGE antibodies or control antibodies. The expression of RAGE was strongly enhanced in the peritoneal membrane of the diabetic animals. The diabetic peritonea were characterized by an elevated transport of small solutes, lower ultrafiltration rates, a higher vascular density, and an upregulation of endothelial nitric oxide synthase expression. These parameters were unaffected by treatment with anti-RAGE antibodies. In contrast, anti-RAGE but not control antibodies prevented upregulation of TGF-beta, development of submesothelial fibrosis, and fibronectin accumulation in the peritoneum of diabetic animals. In conclusion, binding of AGE to RAGE increases the expression of TGF-beta and contributes to the development of submesothelial fibrosis. Neoangiogenesis and the resultant loss of ultrafiltration capacity are mediated by different pathogenetic pathways.

  • Endocrinology and Physiology
View this product on CiteAb