Product Citations: 26

Dynamics of antimicrobial proteins' expression and their bactericidal activity in mouse milk.

In ImmunoHorizons on 26 April 2025 by Saha, P., Abokor, A., et al.

Mother's milk is considered as "complete edible immune system." It contains macro- and micronutrients required to maintain infant growth and provides an excellent source for innate and adaptive immune proteins that not only protects infants from enteropathogens but also aid in the initial colonization of gut microbiota. In this study, we analyzed the milk of C57BL/6J dams and found significant changes in the composition of antimicrobial and immune proteins throughout the lactation period. Innate immune proteins, serum amyloid A, soluble CD14, and notably lipocalin-2 were detected in milk at high quantities. These proteins were substantially reduced in the milk from MyD88-deficient dams. Further, adaptive immune proteins, specifically IgA and IgG, exhibit a distinct shift during postpartum lactation stages. While IgG is the dominant immunoglobulin in milk at day 5 postpartum, by day 15 its levels were surpassed by IgA whose levels increased over time. The administration of TLR4 ligand LPS to WT dams significantly increased the aforementioned milk innate and adaptive proteins. Surprisingly, the milk from WT dams suppressed E. coli growth more effectively than milk collected from LPS-treated mice; such suppression, however, was completely lost upon boiling. Intriguingly, IgA, but not Lcn2, serves as a predominant factor in inhibiting E. coli proliferation, suggesting the critical role of IgA in regulating microbial colonization in the neonatal gut. Collectively, our findings provide insight into the dynamics of various immune proteins present in breast milk and highlight their pivotal roles in determining neonatal immune responses and microbial colonization at early stage.
© The Author(s) 2025. Published by Oxford University Press on behalf of The American Association of Immunologists.

Fc effector of anti-Aβ antibody induces synapse loss and cognitive deficits in Alzheimer's disease-like mouse model.

In Signal Transduction and Targeted Therapy on 25 January 2023 by Sun, X. Y., Yu, X. L., et al.

Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aβ-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aβ, antibody, and complement. Notably, anti-Aβ antibodies without Fc fragment, or with blockage of CR3 or FcγRIIb, did not exert these adverse effects. Consistently, Aβ-targeting antibodies, but not their Fab fragments, significantly induced acute microglial synapse removal and rapidly exacerbated cognitive deficits and neuroinflammation in APP/PS1 mice post-treatment, whereas the memory impairments in mice were gradually rescued thereafter. Since the recovery rate of synapses in humans is much lower than that in mice, our findings may clarify the variances in the preclinical and clinical studies assessing AD immunotherapies. Therefore, Aβ-targeting antibodies lack of Fc fragment, or with reduced Fc effector function, may not induce microglial synaptic pruning, providing a safer and more efficient therapeutic alternative for passive immunotherapy for AD.
© 2022. The Author(s).

  • Neuroscience

TCDD exposure alters fecal IgA concentrations in male and female mice.

In BMC Pharmacology Toxicology on 21 April 2022 by Foxx, C. L., Nagy, M. R., et al.

Activation of the aryl hydrocarbon receptor (AhR) can alter diurnal rhythms including those for innate lymphoid cell numbers, cytokine and hormone levels, and feeding behaviors. Because immune responses and antibody levels are modulated by exposure to AhR agonists, we hypothesized that some of the variation previously reported for the effects of AhR activation on fecal secretory immunoglobulin A (sIgA) levels could be explained by dysregulation of the diurnal sIgA rhythm.
C57Bl/6 J mice were exposed to peanut oil or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 10 or 40 μg/Kg) and fecal sIgA levels were determined in samples collected every 4 h over 4 days.
Fecal sIgA concentrations were not significantly different between light and dark phases of the photoperiod in either male or female mice, and there were no significant circadian rhythms observed, but TCDD exposure significantly altered both fecal mesor sIgA and serum IgA concentrations, in parallel, in male (increased) and female (biphasic) mice.
AhR activation can contribute to the regulation of steady state IgA/sIgA concentrations.
© 2022. The Author(s).

An Intranasal Vaccine Based on Outer Membrane Vesicles Against SARS-CoV-2.

In Frontiers in Microbiology on 23 November 2021 by Thapa, H. B., Müller, A. M., et al.

The prevailing pandemic of SARS-CoV-2 highlights the desperate need of alternative vaccine-platforms, which are safe, effective, and can be modified to carry antigens of emerging pathogens. The current SARS-CoV-2 vaccines based on mRNA and adenoviral vector technology meet some of these criteria but still face limitations regarding administration route, mass production, stability, and storage. Herein, we introduce a novel SARS-CoV-2 vaccine candidate based on bacterial outer membrane vesicles (OMVs). Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC) have been genetically modified to produce increased amounts of detoxified OMVs decorated with the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein. Intranasal immunization with RBD-decorated OMVs induced not only a robust immune response against the bacterial outer membrane components but also detectable antibody titers against the Spike protein. Cell culture infection assays using a Spike-pseudotyped lentivirus confirmed the presence of SARS-CoV-2 neutralizing antibodies. Highest titers against the SARS-CoV-2 Spike protein and most potent neutralization activity were observed for an alternating immunization regimen using RBD-decorated OMVs from ETEC and V. cholerae in turn. These results highlight the versatile vaccine applications offered by OMVs via expression of heterologous antigens in the donor bacterium.
Copyright © 2021 Thapa, Müller, Camilli and Schild.

  • COVID-19
  • Immunology and Microbiology

Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity.

In Nature Immunology on 1 September 2021 by Hu, W., Wang, Z. M., et al.

The immunosuppressive function of regulatory T (Treg) cells is dependent on continuous expression of the transcription factor Foxp3. Foxp3 loss of function or induced ablation of Treg cells results in a fatal autoimmune disease featuring all known types of inflammatory responses with every manifestation stemming from Treg cell paucity, highlighting a vital function of Treg cells in preventing fatal autoimmune inflammation. However, a major question remains whether Treg cells can persist and effectively exert their function in a disease state, where a broad spectrum of inflammatory mediators can either inactivate Treg cells or render innate and adaptive pro-inflammatory effector cells insensitive to suppression. By reinstating Foxp3 protein expression and suppressor function in cells expressing a reversible Foxp3 null allele in severely diseased mice, we found that the resulting single pool of rescued Treg cells normalized immune activation, quelled severe tissue inflammation, reversed fatal autoimmune disease and provided long-term protection against them. Thus, Treg cells are functional in settings of established broad-spectrum systemic inflammation and are capable of affording sustained reset of immune homeostasis.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.

  • ELISA
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb