Product Citations: 7

Due to the low efficacy and the need for seasonal adaptation of currently licensed influenza A vaccines, the importance of alternative vaccination strategies is increasingly recognized. Considering that DNA vaccines can be rapidly manufactured and readily adapted with novel antigen sequences, genetic vaccination is a promising immunization platform. However, the applicability of different genetic adjuvants to this approach still represents a complex challenge. Immune checkpoints are a class of molecules involved in adaptive immune responses and germinal center reactions. In this study, we immunized mice by intramuscular electroporation with a DNA-vaccine encoding hemagglutinin (HA) and nucleoprotein (NP) of the influenza A virus. The DNA-vaccine was applied either alone or in combination with genetic adjuvants encoding the soluble ectodomains of programmed cell death protein-1 (sPD-1) or its ligand (sPD-L1). Co-administration of genetic checkpoint adjuvants did not significantly alter immune responses against NP. In contrast, sPD-1 co-electroporation elevated HA-specific CD4+ T cell responses, decreased regulatory CD4+ T cell pools, and modulated the IgG2a-biased HA antibody pattern towards an isotype-balanced IgG response with a trend to higher influenza neutralization in vitro. Taken together, our data demonstrate that a genetic DNA-adjuvant encoding soluble ectodomains of sPD-1 was able to modulate immune responses induced by a co-administered influenza DNA vaccine.

  • Genetics
  • Immunology and Microbiology

Genetic and phenotypic characterization of the novel mouse substrain C57BL/6N Korl with increased body weight.

In Scientific Reports on 27 October 2017 by Choi, K. M., Jung, J., et al.

In inbred mouse lines, there is generally little genetic difference between individuals. This small genetic variability facilitates carrying out research on minute changes of various traits and the gene pool. Also, characterizing the diversity and detecting selective genetic and phenotypic signatures are crucial to understanding the genomic basis of a population and to identify specific patterns of evolutionary change. In this study, we investigated the underlying genetic profiles of a newly developed mouse strain, C57BL/6NKorl (Korl), established through sibling mating over 30 generations. To analyse the distinctive genomic features of Korl mice, we used whole-genome sequencing from six samples, which were compared to those of other C57BL/6N-based mouse strains. Korl strain-specific polymorphisms were identified and signatures of a selective sweep were detected. In particular, the candidate genes related to the increased body weight of the Korl strain were identified. Establishment of the genetic profile of Korl mice can provide insight into the inbreeding-induced changes to the gene pool, and help to establish this strain as a useful model for practical and targeted research purposes.

  • IF
  • Mus musculus (House mouse)
  • Genetics

Pathogenic autoreactive B cells are not negatively selected toward matrix protein collagen II.

In The Journal of Immunology on 1 November 2011 by Cao, D., Khmaladze, I. a., et al.

We have addressed the importance of B cell tolerance to collagen type II, a matrix protein, which is a target in rheumatoid arthritis (RA) and its mouse models. We generated a germline-encoded anti-collagen type II (CII) IgH replacement anti-C1 B cell mouse strain (ACB) to investigate how B cell tolerance to CII, a matrix protein, is subverted and to further understand pathogenesis of RA. Phenotypic analysis revealed that CII-specific B cells were surprisingly neither deleted nor anergized. Instead, they were readily detected in all lymphoid organs. Spontaneously produced autoantibodies could bind directly to cartilage surface without detectable pathology. However, exaggerated arthritis was seen after injection of anti-CII Abs specific for other epitopes. In addition, Abs from CII-specific hybridomas generated from ACB mice induced arthritis. Interestingly, IgH/L chain sequence data in B cell hybridomas revealed a lack of somatic mutations in autoreactive B cells. The ACB model provides the first possibility, to our knowledge, to study B cell tolerance to a matrix protein, and the observations made in the study could not be predicted from previous models. B cell-reactive epitopes on CII are largely shared between human RA and rodent CII-induced arthritis; this study, therefore, has important implications for further understanding of pathological processes in autoimmune diseases like RA.

  • Immunology and Microbiology

EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues.

In The Journal of Immunology on 15 September 2011 by Kelly, L. M., Pereira, J. P., et al.

EBV-induced gene 2 (EBI2) was recently shown to direct the delayed movement of activated B cells to interfollicular and outer follicular regions of secondary lymphoid organs and to be required for mounting a normal T-dependent Ab response. In this study, we show that EBI2 promotes an early wave of Ag-activated B cell migration to the outer follicle in mice. Later, when B cells have moved to the T zone in a CCR7-dependent manner, EBI2 helps distribute the cells along the B zone-T zone boundary. Subsequent EBI2-dependent movement to the outer follicle coincides with CCR7 downregulation and is promoted by CD40 engagement. Using a bioassay, we identify a proteinase K-resistant, hydrophobic EBI2 ligand activity in lymphoid and nonlymphoid tissues. Production of EBI2 ligand activity by a cell line is sensitive to statins, suggesting production in a 3-hydroxy-3-methyl-glutaryl-CoA reductase-dependent manner. CD40-activated B cells show sustained EBI2-dependent responsiveness to the bioactivity. These findings establish a role for EBI2 in helping control B cell position at multiple stages during the Ab response and they suggest that EBI2 responds to a broadly distributed lipid ligand.

  • Immunology and Microbiology

Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome.

In The Journal of Clinical Investigation on 1 June 2009 by Nijnik, A., Dawson, S., et al.

Hypomorphic mutations in DNA ligase IV (LIG4) cause a human syndrome of immunodeficiency, radiosensitivity, and growth retardation due to defective DNA repair by the nonhomologous end-joining (NHEJ) pathway. Lig4-null mice are embryonic lethal, and better mouse models are needed to study human LigIV syndrome. We recently identified a viable mouse strain with a Y288C hypomorphic mutation in the Lig4 gene. Lig4Y288C mice exhibit a greater than 10-fold reduction of LigIV activity in vivo and recapitulate the immunodeficiency and growth retardation seen in human patients. Here, we have demonstrated that the Lig4Y288C mutation leads to multiple defects in lymphocyte development and function, including impaired V(D)J recombination, peripheral lymphocyte survival and proliferation, and B cell class switch recombination. We also highlight a high incidence of thymic tumors in the Lig4Y288C mice, suggesting that wild-type LigIV protects against malignant transformation. These findings provide explanations for the complex lymphoid phenotype of human LigIV syndrome.

  • Genetics
View this product on CiteAb