Product Citations: 20

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology
  • Stem Cells and Developmental Biology

A genome-wide RNAi screen reveals essential therapeutic targets of breast cancer stem cells.

In EMBO Molecular Medicine on 1 October 2019 by Arfaoui, A., Rioualen, C., et al.

Therapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment. Here, we carried out a genome-wide RNA interference screen to identify genes that regulate breast CSCs-fate (bCSC). Using an interactome/regulome analysis, we integrated screen results in a functional mapping of the CSC-related processes. This network analysis uncovered potential therapeutic targets controlling bCSC-fate. We tested a panel of 15 compounds targeting these regulators. We showed that mifepristone, salinomycin, and JQ1 represent the best anti-bCSC activity. A combination assay revealed a synergistic interaction of salinomycin/JQ1 association to deplete the bCSC population. Treatment of primary breast cancer xenografts with this combination reduced the tumor-initiating cell population and limited metastatic development. The clinical relevance of our findings was reinforced by an association between the expression of the bCSC-related networks and patient prognosis. Targeting bCSCs with salinomycin/JQ1 combination provides the basis for a new therapeutic approach in the treatment of breast cancer.
© 2019 The Authors. Published under the terms of the CC BY 4.0 license.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cancer Research
  • Stem Cells and Developmental Biology

Extrinsic allospecific signals of hematopoietic origin dictate iNKT cell lineage-fate decisions during development.

In Scientific Reports on 29 June 2016 by Strong, B. S. I., Newkold, T. J., et al.

Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells.

  • Stem Cells and Developmental Biology

MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

In PLoS ONE on 10 September 2014 by Salama, A., Fichou, N., et al.

In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6) or suppressive (IL-10) cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  • Immunology and Microbiology

Prognostic significance of CD44 variant 2 upregulation in colorectal cancer.

In British Journal of Cancer on 15 July 2014 by Ozawa, M., Ichikawa, Y., et al.

CD133 and CD44 are putative cancer stem cell (CSC) markers in colorectal cancer (CRC). However, their clinical significance is currently unclear. Here, we evaluated primary CRC cell isolates to determine the significance of several CSC markers, including CD133 and CD44, as predictors of tumourigenesis and prognosis.
CD133- and CD44-positive cells from fresh clinical samples of 77 CRCs were selected by flow cytometric sorting and evaluated for tumourigenicity following subcutaneous transplantation into NOD/SCID mice. Cancer stem cell marker expression was examined in both xenografts and a complementary DNA library compiled from 167 CRC patient samples.
CD44(+), CD133(+) and CD133(+)CD44(+) sub-populations were significantly more tumourigenic than the total cell population. The clinical samples expressed several transcript variants of CD44. Variant 2 was specifically overexpressed in both primary tumours and xenografts in comparison with the normal mucosa. A prognostic assay using qRT-PCR showed that the CD44v2(high) group (n=84, 5-year survival rate (5-OS): 0.74) had a significantly worse prognosis (P=0.041) than the CD44v2(low) group (n=83, 5-OS: 0.88).
CD44 is an important CSC marker in CRC patients. Furthermore, CRC patients with high expression of CD44v2 have a poorer prognosis than patients with other CD44 variants.

  • Cancer Research
View this product on CiteAb