Product Citations: 52

MHC-I-mediated antigen presentation is pivotal in antitumor immunity, enabling the recognition and destruction of tumor cells by CD8+ T cells. Both the proteasome and autophagy serve as essential cellular degradation mechanisms that regulate the stability and functionality of MHC-I molecules. In melanoma, modulating the pathways that affect MHC-I antigen presentation is pivotal and can profoundly influence the therapeutic outcomes of immunotherapy. Our initial effort of this study was a screening process to identify natural compounds capable of amplifying MHC-I surface expression on B16 melanoma cells. Utilizing flow cytometry with fluorescently tagged antibodies, we identified tetrandrine (Tet), a bisbenzylisoquinoline alkaloid derived from the root of Stephania tetrandra, as a potent enhancer of MHC-I-mediated antigen presentation in B16 melanoma cells. We demonstrate that tetrandrine (2.5, 5, 7.5 μM) dose-dependently upregulates both surface and total MHC-I protein levels in B16 or A375 melanoma cells by simultaneously inhibiting autophagy and proteasomal activity, two key pathways involved in MHC-I degradation. This dual inhibition stabilizes MHC-I molecules, leading to enhanced tumor antigen presentation and improved recognition by CD8+ T cells. In co-culture systems, tetrandrine treatment increased CD8+ T cell activation and cytotoxicity against melanoma cells, evidenced by elevated IFN-γ secretion and increased tumor cell apoptosis. Administration of tetrandrine (50 mg·kg-1·d-1, i.g., for 15 days) significantly suppressed melanoma growth in mouse models accompanied by increased CD8+ T cell infiltration and activation within the tumor microenvironment. Notably, tetrandrine synergized with anti-PD-1 immune checkpoint therapy, leading to enhanced tumor growth inhibition compared to either treatment alone. We revealed that tetrandrine (7.5 μM) blocked the lysosomal calcium efflux channel TPC2, disrupting lysosomal calcium homeostasis, thus impairing lysosomal acidification and proteasomal activity, thereby stabilizing MHC-I molecules and promoting antigen presentation. These results highlight tetrandrine's unique mechanism of action in enhancing MHC-I-mediated antigen presentation through dual inhibition of autophagic flux and proteasomal degradation. This study underscores tetrandrine's potential as a novel immunomodulatory agent to boost CD8+ T cell-mediated tumor cell eradication and enhance the efficacy of immune checkpoint therapies.
© 2025. The Author(s).

  • Cancer Research
  • Immunology and Microbiology
  • Pharmacology

Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.

  • Mus musculus (House mouse)
  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

Background: Immune checkpoint inhibitors (ICIs), such as programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1), have been widely applied in clinical and scientific research. Despite their effective antitumor effects in clinical tumor therapy, most tumors are still resistant to ICIs and long-term benefits are lacking. In addition, tumor patients complicated with interstitial lung disease limit the application of ICI therapy. Therefore, for these cases, there is an urgent need to develop new methods to relieve lung complications and enhance the efficacy of ICI therapy. Nintedanib, a potent triple angiokinase inhibitor approved for the treatment of progressive fibrotic interstitial lung disease. However, its immunotherapy synergy properties and mechanism are still pending further exploration. Methods: To explore the therapeutic potential of nintedanib and αPD-L1 combination therapy, MC38, LLC, and 4T1 tumor models were used to investigate antitumor and antimetastatic activities in vivo. An idiopathic pulmonary fibrosis-tumor bearing model was used to evaluate the effect of the synergy therapy on tumor model complicated with lung disease. Moreover, RNA-seq, immunohistochemistry, and flow cytometry were utilized to analyze the effect of combination treatment on the tumor microenvironment. The bioactivity following different treatments was determined by western blotting, CCK-8, and flow cytometry. Results: In this study, nintedanib and αPD-L1 synergy therapy exhibited significant antitumor, antimetastatic and anti-pulmonary fibrosis effects. Both in vitro and in vivo experiments revealed that these effects included promoting vessel normalization, increasing infiltration and activation of immune cells in tumors, enhancing the response of interferon-gamma, and activating the MHC class I-mediated antigen presentation process. Moreover, our results showed an increased expression of PD-L1 and promoted phosphorylation of STAT3 after nintedanib (1 µM) treatment. Conclusion: The combination of nintedanib and αPD-L1 increased ICI therapy responses, relieved lung complications and further activated the tumor immune microenvironment; thus, exhibiting a notable antitumor effect. Accordingly, the nintedanib synergy strategy is expected to be a promising candidate therapy for tumor patients complicated with interstitial lung disease in clinical practice.
© The author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

A Mouse Model of PPRV Infection for Elucidating Protective and Pathological Roles of Immune Cells.

In Frontiers in Immunology on 30 April 2021 by Sharma, Y., Sarkar, R., et al.

The study was aimed at developing an accessible laboratory animal model to elucidate protective and pathological roles of immune mediators during Peste des petits ruminants virus (PPRV) infection. It is because of the critical roles of type I IFNs in anti-viral defense, we assessed the susceptibility of IFN receptor knock out (IFNR KO) mice to PPRV infection. IFNR KO mice were exceedingly susceptible to the infection but WT animals efficiently controlled PPRV. Accordingly, the PPRV infected IFNR KO mice gradually reduced their body weights and succumbed to the infection within 10 days irrespective of the dose and route of infection. The lower infecting doses predominantly induced immunopathological lesions. The viral antigens as well as the replicating PPRV were abundantly present in most of the critical organs such as brain, lungs, heart and kidneys of IFNR KO mice infected with high dose of the virus. Neutrophils and macrophages transported the replicating virus to central nervous system (CNS) and contributed to pathology while the elevated NK and T cell responses directly correlated with the resolution of PPRV infection in WT animals. Using an array of fluorescently labeled H-2Kb tetramers, we discovered four immunogenic epitopes of PPRV. The PPRV-peptides interacted well with H-2Kb in acellular and cellular assay as well as expanded the virus-specific CD8+ T cells in immunized or infected mice. Adoptively transferred CD8+ T cells helped control PPRV in infected mice. Our study therefore established and employed a mouse model for investigating the pathogenesis of PPRV. The model could be useful for elucidating the contribution of immune cells in disease progression as well as to test anti-viral agents.
Copyright © 2021 Sharma, Sarkar, Jain, Singh, Shekhar, Shanmugam, Dhanavelu, Tembhurne, Kaul and Sehrawat.

  • Immunology and Microbiology

Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin.
The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro.
SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs.
The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells.
The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.

  • Cancer Research
View this product on CiteAb