Product Citations: 3

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.
© 2022 by The American Society of Hematology.

  • Cardiovascular biology

Long-term survivors of glioblastoma multiforme, the most common form of primary intracranial malignancy in adults, are extremely rare. Experimental animal models that more closely resemble human disease are essential for the identification of effective novel therapies. We report here an extensive analysis of the 4C8 glioma model to assess its suitability for evaluating novel type 1 herpes simplex virus (HSV-1) therapies of malignant glioma. We first determined that expression of major histocompatibility complex I and II and of alphavbeta3 in the 4C8 model was comparable to that seen in human glioma cells. Next, using a panel of Delta(gamma1)34.5 HSVs, we demonstrated that, in vitro, 4C8 cells were as sensitive as human glioma cells to both infection and lysis and that the 4C8 cells supported the production of foreign gene products. Replication competence of HSV was demonstrated in vitro. Finally, 4C8 intracranial gliomas were established in immunologically competent syngeneic B6D2F1 mice, treated by intratumoral injection of selected engineered HSVs, including the interleukin-12-expressing virus, M002. Survival data from these studies demonstrated that 4C8 cells in vivo are sensitive to both direct oncolysis and HSV-mediated interleukin-12 expression. Fluorescence-activated cell sorting analyses of immune-related infiltrating cells supported the concept that survival was prolonged in part because of antitumor actions of these cells. We conclude that the 4C8/B6D2F1 syngeneic glioma model is suitable for preclinical evaluation of HSV-based therapies and that M002 is a superior virus for the treatment of murine glioma in this model.

  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B.

In The Journal of Immunology on 15 January 2000 by Watanabe, H., Garnier, G., et al.

In systemic lupus erythematosus, the renal deposition of complement-containing immune complexes initiates an inflammatory cascade resulting in glomerulonephritis. Activation of the classical complement pathway with deposition of C3 is pathogenic in lupus nephritis. Although the alternative complement pathway is activated in lupus nephritis, its role in disease pathogenesis is unknown. To determine the role of the alternative pathway in lupus nephritis, complement factor B-deficient mice were backcrossed to MRL/lpr mice. MRL/lpr mice develop a spontaneous lupus-like disease characterized by immune complex glomerulonephritis. We derived complement factor B wild-type (B+/+), homozygous knockout (B-/-), and heterozygous (B+/-) MRL/lpr mice. Compared with B+/- or B+/+ mice, MRL/lpr B-/- mice developed significantly less proteinuria, less glomerular IgG deposition, and decreased renal scores as well as lower IgG3 cryoglobulin production and vasculitis. Serum C3 levels were normal in the B-/- mice compared with significantly decreased levels in the other two groups. These results suggest that: 1) factor B plays an important role in the pathogenesis of glomerulonephritis and vasculitis in MRL/lpr mice; and 2) activation of the alternative pathway, either by the amplification loop or by IgA immune complexes, has a prominent effect on serum C3 levels in this lupus model.

  • Immunology and Microbiology
View this product on CiteAb