Product Citations: 61

Inflammatory monocyte-derived dendritic cells mediate autoimmunity in murine model of systemic lupus erythematosus.

In Journal of Translational Autoimmunity on 4 August 2020 by Miyagawa, F., Tagaya, Y., et al.

Using a mouse model of systemic lupus erythematosus (SLE), we recently demonstrated that the two major manifestations of SLE are mechanistically independent because the type I IFN pathway leads to the autoantibody production whereas the NF-κB activation is sufficient for the development of glomerulonephritis. To further advance our understandings on the molecular pathways regulating the development of SLE, we studied the role of IRF8 because it controls both type I IFN and NF-κB pathways and saw that IRF8-deficient mice failed to develop either glomerulonephritis or the autoantibody production. Furthermore, these genetically engineered mice prompted us to realize the important role of Ly6Chigh inflammatory monocytes in the development of SLE. These monocytes migrate to the peritoneal cavity in WT and IRF7-deficient mice but not in IRF8-deficient mice, and there they produce both type I IFN and proinflammatory cytokines in WT mice, while in IRF7-deficient mice they only produce proinflammatory cytokines. Upon migration to the spleen, Ly6Chigh inflammatory monocytes differentiate into dendritic cells (DCs) which are capable of producing proinflammatory cytokines in response to dsDNA autoantigen. Collectively, type I IFN produced from inflammatory monocytes/monocyte-derived DCs might be essential for autoantibody production whereas proinflammatory cytokines produced from them might mediate tissue damages in this model. Our study reveals a specialized role for monocyte-derived antigen presenting cells in autoimmunity. Plasticity of monocyte might play an important role not only in the pathogenesis of the disease but also in flare-ups of the disease.
© 2020 The Author(s).

  • Immunology and Microbiology

Classical Activation of Macrophages Leads to Lipid Droplet Formation Without de novo Fatty Acid Synthesis.

In Frontiers in Immunology on 7 March 2020 by Rosas-Ballina, M., Guan, X. L., et al.

Altered lipid metabolism in macrophages is associated with various important inflammatory conditions. Although lipid metabolism is an important target for therapeutic intervention, the metabolic requirement involved in lipid accumulation during pro-inflammatory activation of macrophages remains incompletely characterized. We show here that macrophage activation with IFNγ results in increased aerobic glycolysis, iNOS-dependent inhibition of respiration, and accumulation of triacylglycerol. Surprisingly, metabolite tracing with 13C-labeled glucose revealed that the glucose contributed to the glycerol groups in triacylglycerol (TAG), rather than to de novo synthesis of fatty acids. This is in stark contrast to the otherwise similar metabolism of cancer cells, and previous results obtained in activated macrophages and dendritic cells. Our results establish a novel metabolic pathway whereby glucose provides glycerol to the headgroup of TAG during classical macrophage activation.
Copyright © 2020 Rosas-Ballina, Guan, Schmidt and Bumann.

  • Immunology and Microbiology

Sex differences in the therapeutic effects of anti-PDL2 neutralizing antibody on stroke.

In Metabolic Brain Disease on 1 December 2019 by Seifert, H. A., Zhu, W., et al.

Inflammation involving migration of immune cells across the damaged blood-brain barrier (BBB), activation of resident innate microglia and production of inflammatory humoral mediators such as cytokines and chemokines play a critical role in the pathogenesis of ischemic stroke. Cell-cell signaling involved in the process also includes checkpoint interaction between programmed death receptor (PD1) and programmed death ligands, PDL1 and PDL2. Based on our previous studies showing reduced MCAO infarct volumes in PDL2 deficient mice, we evaluated the ability of anti-PDL2 mAb to treat MCAO in male and female C57BL/6 mice. We found that anti-PDL2 neutralizing antibody treatment of MCAO significantly reduced infarct volumes in male mice but had no protective effects in female mice even at a 5-fold increased dose of anti-PDL2 mAb. The protection in male mice was likely mediated by reduced percentages in the spleen of PDL2+CD19+ B cells, PDL1+CD4+ T cells and CD86+CD11b+ macrophages in concert with reduced expression of PDL1 and TNFα and continued expression of CD206, in the injured ipsilateral brain hemisphere. The lack of a therapeutic benefit of anti-PDL2 on stroke-induced infarct volumes in female mice was reflected by no detectable reduction in expressed PDL2 or PDL1 and an increased frequency of Th1 and Th17 pro-inflammatory T cell subsets in the spleen, an effect not seen in PDL2 mAb treated males. This result potentially limits the utility of anti-PDL2 mAb therapy in stroke to males but underscores the importance of meeting the STAIR requirements for development of new stroke therapies for both sexes.

  • Cardiovascular biology

Langerhans cell histiocytosis (LCH) is characterized by the accumulation of Langerin (CD207)-expressing histiocytes. Mutational activation of mitogen-activated protein kinase pathway genes, in particular BRAF, drives most cases. To test whether activated BRAF is sufficient for the development of LCH, we engineered mice to express BRAF V600E under the control of the human Langerin promoter. These mice have shortened survivals, smaller lymphoid organs, absent Leydig cells, and fewer epidermal LCs than controls, but do not accumulate histiocytes. To test whether the absence of histiocyte proliferation could be due to oncogene-induced senescence, we engineered homozygous Pten loss in the same cells that expressed BRAF V600E. Like mice with intact Pten, these mice have shortened survivals, smaller thymi, and absent Leydig cells. However, loss of Pten also leads to the accumulation of CD207+ histiocytes in spleen, thymus, and some lymph nodes. While many CD207+ histiocytes in the thymus are CD8-, reminiscent of LCH cells, the CD207+ histiocytes in the spleen and lymph nodes are CD8+. These mice also accumulate large numbers of CD207- cells in the lamina propria (LP) of the small intestine. Both the lymphoid and LP phenotypes are likely due to human Langerin promoter-driven BRAF V600E expression in resident CD8+ dendritic cells in the former and LP dendritic cells in the latter and confirm that Pten loss is required to overcome inhibitory pathways induced by BRAF V600E expression. The complex phenotype of these mice is a consequence of the multiple murine cell types in which the human Langerin promoter is active.

The proliferation, differentiation and survival of mononuclear phagocytes depend on signals from the receptor for macrophage colony-stimulating factor, CSF1R. The mammalian Csf1r locus contains a highly conserved super-enhancer, the fms-intronic regulatory element (FIRE). Here we show that genomic deletion of FIRE in mice selectively impacts CSF1R expression and tissue macrophage development in specific tissues. Deletion of FIRE ablates macrophage development from murine embryonic stem cells. Csf1rΔFIRE/ΔFIRE mice lack macrophages in the embryo, brain microglia and resident macrophages in the skin, kidney, heart and peritoneum. The homeostasis of other macrophage populations and monocytes is unaffected, but monocytes and their progenitors in bone marrow lack surface CSF1R. Finally, Csf1rΔFIRE/ΔFIRE mice are healthy and fertile without the growth, neurological or developmental abnormalities reported in Csf1r-/- rodents. Csf1rΔFIRE/ΔFIRE mice thus provide a model to explore the homeostatic, physiological and immunological functions of tissue-specific macrophage populations in adult animals.

  • IHC
  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb