Product Citations: 21

Epidermal maintenance of Langerhans cells relies on autophagy-regulated lipid metabolism.

In The Journal of Cell Biology on 3 February 2025 by Arbogast, F., Sal-Carro, R., et al.

Macroautophagy (often-named autophagy), a catabolic process involving autophagy-related (Atg) genes, prevents the accumulation of harmful cytoplasmic components and mobilizes energy reserves in long-lived and self-renewing cells. Autophagy deficiency affects antigen presentation in conventional dendritic cells (DCs) without impacting their survival. However, previous studies did not address epidermal Langerhans cells (LCs). Here, we demonstrate that deletion of either Atg5 or Atg7 in LCs leads to their gradual depletion. ATG5-deficient LCs showed metabolic dysregulation and accumulated neutral lipids. Despite increased mitochondrial respiratory capacity, they were unable to process lipids, eventually leading them to ferroptosis. Finally, metabolically impaired LCs upregulated proinflammatory transcripts and showed decreased expression of neuronal interaction receptors. Altogether, autophagy represents a critical regulator of lipid storage and metabolism in LCs, allowing their maintenance in the epidermis.
© 2024 Arbogast et al.

  • Mus musculus (House mouse)
  • Biochemistry and Molecular biology
  • Cell Biology

Scavenging of soluble and immobilized CCL21 by ACKR4 regulates peripheral dendritic cell emigration.

In Proceedings of the National Academy of Sciences of the United States of America on 27 April 2021 by Bastow, C. R., Bunting, M. D., et al.

Leukocyte homing driven by the chemokine CCL21 is pivotal for adaptive immunity because it controls dendritic cell (DC) and T cell migration through CCR7. ACKR4 scavenges CCL21 and has been shown to play an essential role in DC trafficking at the steady state and during immune responses to tumors and cutaneous inflammation. However, the mechanism by which ACKR4 regulates peripheral DC migration is unknown, and the extent to which it regulates CCL21 in steady-state skin and lymph nodes (LNs) is contested. Specifically, our previous findings that CCL21 levels are increased in LNs of ACKR4-deficient mice [I. Comerford et al., Blood 116, 4130-4140 (2010)] were refuted [M. H. Ulvmar et al., Nat. Immunol. 15, 623-630 (2014)], and no differences in CCL21 levels in steady-state skin of ACKR4-deficient mice were reported despite compromised CCR7-dependent DC egress in these animals [S. A. Bryce et al., J. Immunol. 196, 3341-3353 (2016)]. Here, we resolve these issues and reveal that two forms of CCL21, full-length immobilized and cleaved soluble CCL21, exist in steady-state barrier tissues, and both are regulated by ACKR4. Without ACKR4, extracellular CCL21 gradients in barrier sites are saturated and nonfunctional, DCs cannot home directly to lymphatic vessels, and excess soluble CCL21 from peripheral tissues pollutes downstream LNs. The results identify the mechanism by which ACKR4 controls DC migration in barrier tissues and reveal a complex mode of CCL21 regulation in vivo, which enhances understanding of functional chemokine gradient formation.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Microtubules control cellular shape and coherence in amoeboid migrating cells.

In The Journal of Cell Biology on 1 June 2020 by Kopf, A., Renkawitz, J., et al.

Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence.
© 2020 Kopf et al.

  • Mus musculus (House mouse)
  • Cell Biology

Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes.

In Nanoscale on 30 May 2019 by Murera, D., Malaganahalli, S., et al.

Carbon-based nanomaterials represent a new tool in future medical applications. Thus, focusing on the evaluation of the degree of their safety has been growing in the last years. In this study we were particularly interested in understanding the impact of few layer graphene (FLG) on primary murine lymphocytes. These B and T cells, that are the second, but specialized, line of defense of the immune system, rely on various mechanisms to ensure their efficient function and maintenance. One of these mechanisms is autophagy that can be triggered by various nanomaterials in some types of cells. For these reasons, we were interested in evaluating the way FLG could affect this process in lymphocytes. Our results point out that FLG neither impacts the viability and activation of T and B cells nor their autophagic activity. Using confocal microscopy, we were also able to see that FLG does not appear to cause any membrane damage and does not penetrate inside of these cells. Overall, our data do not show any effect of this material on lymphocyte homeostasis, which is one more argument in favor of the continuation of studies investigating the potential of FLG for therapeutic applications.

  • ICC
  • ICC-IF
  • Mus musculus (House mouse)

ATG5 is required for B cell polarization and presentation of particulate antigens.

In Autophagy on 1 February 2019 by Arbogast, F., Arnold, J., et al.

The involvement of macroautophagy/autophagy proteins in B-cell receptor (BCR) trafficking, although suspected, is not well understood. We show that ATG5 (autophagy related 5) contributes to BCR polarization after stimulation and internalization into LAMP1 (lysosomal-associated membrane protein 1)+ and major histocompatibility complex class II (MHC-II)+ compartments. BCR polarization is crucial in the context of immobilized antigen processing. Moreover, antigen presentation to cognate T cells is decreased in the absence of ATG5 when the model antigen OVAL/ovalbumin is provided in an immobilized form in contrast to the normal presentation of soluble OVAL. We further show that ATG5 is required for centrosome polarization and actin nucleation in the immune synapse area. This event is accompanied by an increased interaction between ATG16L1 (autophagy related 16-like 1 [S. cerevisiae]) and the microtubule-organizing center-associated protein PCM1 (pericentriolar material 1). In the human B cell line BJAB, PCM1 is required for BCR polarization after stimulation. We thus propose that the ATG12 (autophagy related 12)-ATG5-ATG16L1 complex under BCR stimulation allows its interaction with PCM1 and consequently facilitates centrosome relocalization to the immune synapse, optimizing the presentation of particulate antigens. Abbreviations: ACTB: actin beta; ACTR2/3: ARP2/3 actin-related protein 2/3; APC: antigen-presenting cells; ATG: autophagy-related; BCR: B cell receptor; BECN1/Beclin 1: beclin 1, autophagy related; CDC42: cell division cycle 42; Cr2: complement receptor 2; CSFE: carboxyfluorescein succinimidyl ester; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; EEA1: early endosome antigen 1; ELISA: enzyme-linked immunosorbent assay; FITC: fluorescein isothyocyanate; GC: germinal center; GJA1/CX3: gap junction protein, alpha 1; Ig: immunoglobulin; LAMP1: lysosomal-associated membrane protein 1; LAP: LC3-associated phagocytosis; LM: littermate; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen activated protein kinase; MHC-II: major histocompatibility complex class II; MIIC: MHC class II compartment; OVAL: ovalbumin; PBS: phosphate-buffered saline; PCM1: pericentriolar material 1; PtdIns3K: phosphatidylinositol 3-kinase; PTPRC/CD45RB/B220; Protein tyrosine phosphatase, receptor type, C; SYK: spleen tyrosine kinase; TBS: Tris-buffered saline; TCR: T cell receptor; ULK1: unc-51 like kinase 1.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb