Product Citations: 6

Incidence of serum antibodies to xenoantigens on triple-knockout pig cells in different human groups.

In Xenotransplantation on 2 August 2023 by He, S., Li, T., et al.

Xenoantigens other than Gal, Neu5Gc, and Sda may be playing a role in pig graft rejection. We investigated the incidence of antibodies to unknown pig xenoantigen in different human groups.
We collected blood from TKO/hCD55 pigs (n = 3), and isolated PBMCs and RBCs. Serum samples were collected from (i) healthy human volunteers (n = 43), (ii) patients with end-stage renal disease (ESRD) (n = 87), (iii) the same patients after kidney allotransplantation (n = 50), and (iv) renal allotransplant recipients experiencing T cell-mediated rejection (allo-TCMR, n = 10). The sera were initially incubated with TKO/hCD55 pRBCs (1 × 108 cells) for 1 h to absorb anti-pig antibodies (except against SLA and possibly other antigens not expressed on pRBCs) and then the serum (absorbed or unabsorbed) was tested for antibody binding and complement-dependent cytotoxicity (CDC) to TKO/hCD55 pig PBMCs.
A significant reduction in IgM/IgG binding and CDC was observed in the absorbed sera. Serum obtained before and after renal allotransplantation showed no significant difference in IgM or IgG binding to, or in CDC of, TKO/hCD55 pig cells. IgM antibodies (but rarely IgG) against unknown xenoantigens expressed on TKO/hCD55 PBMCs, possibly against swine leukocyte antigens, were documented in healthy humans, patients with ESRD, and those with renal allografts undergoing acute T cell rejection. IgM (but not CDC) was higher in patients experiencing allo-TCMR.
Human sera contain IgM antibodies against unknown pig xenoantigens expressed on TKO/hCD55 pPBMCs. Although not confirmed in the present study, the targets for these antibodies may include swine leukocyte antigens.
© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • Veterinary Research

The changes of immune-related molecules within the ileal mucosa of piglets infected with porcine circovirus type 2.

In Journal of Veterinary Science on 1 September 2020 by Shi, F., Li, Q., et al.

Enteritis is one of the most frequently reported symptoms in piglets infected with porcine circovirus type 2 (PCV2), but the immunopathogenesis has not been reported.
This study examined the effect of a PCV2 infection on the intestinal mucosal immune function through morphological observations and immune-related molecular detection.
Morphological changes within the ileum of piglets during a PCV2 infection were observed. The expression of the related-molecules was analyzed using a gene chip. The immunocyte subsets were analyzed by flow cytometry. The secretory immunoglobulin A (SIgA) content was analyzed by enzyme-linked immunosorbent assay.
The PCV2 infection caused ileal villus damage, intestinal epithelial cells exfoliation, and an increase in lymphocytes in the lamina propria at 21 days post-infection. Differentially expressed genes occurred in the defense response, inflammatory response, and the complement and coagulation cascade reactions. Most of them were downregulated significantly at the induction site and upregulated at the effector site. The genes associated with SIgA production were downregulated significantly at the induction site. In contrast, the expression of the Toll-like receptor-related genes was upregulated significantly at the effector site. The frequencies of dendritic cells, B cells, and CD8⁺T cells were upregulated at the 2 sites. The SIgA content decreased significantly in the ileal mucosa.
PCV2 infections can cause damage to the ileum that is associated with changes in immune-related gene expression, immune-related cell subsets, and SIgA production. These findings elucidated the molecular changes in the ileum after a PCV2 infection from the perspective of intestinal mucosal immunity, which provides insights into a further study for PCV2-induced enteritis.
© 2020 The Korean Society of Veterinary Science.

  • Immunology and Microbiology
  • Veterinary Research

Human T-cell proliferation in response to thrombin-activated GTKO pig endothelial cells.

In Xenotransplantation on 14 September 2012 by Ezzelarab, C., Ayares, D., et al.

Thrombin formation is a key feature in the activation of coagulation in pig xenograft recipients. As thrombin is known to activate endothelial and immune cells, we explored whether thrombin activation of pig endothelial cells (EC) was associated with an increased human T-cell response.
α1,3-galactosyltransferase gene-knockout (GTKO) pig aortic EC (pAEC) were activated by porcine interferon-gamma (pIFNγ), human (h)IFN-γ, or thrombin. Swine leukocyte antigen (SLA) class I and class II expression were measured. Human peripheral blood mononuclear cells (PBMC) and CD4+ T-cell proliferation in response to activated pAEC, the effect of thrombin on pig CD80/CD86 mRNA, and the effect of thrombin inhibition by hirudin were evaluated.
After pAEC activation, SLA I expression did not change, and only pIFNγ upregulated SLA II expression. PBMC proliferation to pIFNγ- and thrombin-activated pAEC was significantly higher (P < 0.001 and P < 0.01) than to non-activated pAEC. CD4+ T-cell proliferation to pIFNγ- and thrombin-activated pAEC was significantly higher (P < 0.001 and P < 0.01) than to non-activated pAEC. Thrombin inhibition by hirudin reduced thrombin-induced upregulation of pAEC CD86 mRNA, and significantly reduced human PBMC proliferation to pAEC in comparison with thrombin alone (P < 0.05).
Thrombin upregulates CD86 mRNA on pAEC, which is associated with increased human T-cell proliferation against pAEC. Hirudin reduces CD86 mRNA in thrombin-activated pAEC and is associated with downregulation of the human T-cell proliferative response. The transplantation of organs from GTKO pigs transgenic for human thrombomodulin, and/or endothelial protein C receptor, in addition to therapeutic regulation of thrombin activation may reduce the cellular response to a pig xenograft and thus reduce the need for intensive immunosuppressive therapy.
© 2012 John Wiley & Sons A/S.

  • Immunology and Microbiology
  • Veterinary Research

Porcine reproductive and respiratory syndrome virus (PRRSV) infection induces interleukin (IL)-10 production and increased numbers of PRRSV-specific regulatory T-lymphocytes in infected pigs. In the present study, the roles of the nucleocapsid (N) protein in induction of IL-10 and CD4(+)CD25(+)Foxp3(+) lymphocytes (T(reg)) were investigated. Transfection of porcine monocyte-derived dendritic cells (MoDCs) and pulmonary alveolar macrophages (PAMs) with a plasmid encoding N protein resulted in significant upregulation of IL-10 gene expression in the gene-transfected cells. Structural conformation, but not nuclear localization, of the expressed N protein was indicated to be essential for the ability to induce IL-10. Furthermore, the presence of recombinant N proteins in cultured PBMCs increased the number of IL-10-producing lymphocytes. Strong induction of IL-10-producing cells and T(reg) was observed when using N protein-pulsed MoDCs, suggesting an important role of MoDCs in induction of IL-10 and T(reg) by the N protein. Neutralization of IL-10 by addition of an anti-IL-10 antibody in the culture system resulted in marked reduction of PRRSV-induced T(reg) in the cultured PBMCs. Together, the data demonstrate the immunomodulatory properties of the PRRSV N protein and the linkage between IL-10 production and development of PRRSV-induced T(reg). Our results reveal an immunomodulatory function of the PRRSV N protein that may contribute to the unique immunological outcome observed following PRRSV infection.

  • Immunology and Microbiology
  • Veterinary Research

Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia.

In Journal of Stem Cells Regenerative Medicine on 1 January 2012 by Kimura, M., Toyoda, M., et al.

Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC) transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP)-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  • Cardiovascular biology
  • Veterinary Research
View this product on CiteAb