Product Citations: 36

Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells.

In Nature Immunology on 1 January 2023 by Horkova, V., Drobek, A., et al.

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.
© 2022. The Author(s).

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation.

In Nature Immunology on 1 June 2022 by Mirchandani, A. S., Jenkins, S. J., et al.

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.
© 2022. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Rapid pathogen-specific recruitment of immune effector cells in the skin by secreted toxins.

In Nature Microbiology on 1 January 2022 by Nguyen, T. H., Cheung, G. Y. C., et al.

Swift recruitment of phagocytic leucocytes is critical in preventing infection when bacteria breach through the protective layers of the skin. According to canonical models, this occurs via an indirect process that is initiated by contact of bacteria with resident skin cells and which is independent of the pathogenic potential of the invader. Here we describe a more rapid mechanism of leucocyte recruitment to the site of intrusion of the important skin pathogen Staphylococcus aureus that is based on direct recognition of specific bacterial toxins, the phenol-soluble modulins (PSMs), by circulating leucocytes. We used a combination of intravital imaging, ear infection and skin abscess models, and in vitro gene expression studies to demonstrate that this early recruitment was dependent on the transcription factor EGR1 and contributed to the prevention of infection. Our findings refine the classical notion of the non-specific and resident cell-dependent character of the innate immune response to bacterial infection by demonstrating a pathogen-specific high-alert mechanism involving direct recruitment of immune effector cells by secreted bacterial products.
© 2021. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Balance between the hematopoietic stem cell (HSC) duality to either possess self-renewal capacity or differentiate into multipotency progenitors (MPPs) is crucial for maintaining homeostasis of the hematopoietic stem/progenitor cell (HSPC) compartment. To retain the HSC self-renewal activity, KIT, a receptor tyrosine kinase, in HSCs is activated by its cognate ligand KITLG originating from niche cells. Here, we show that AT-rich interaction domain 4B (ARID4B) interferes with KITLG/KIT signaling, consequently allowing HSC differentiation. Conditional Arid4b knockout in mouse hematopoietic cells blocks fetal HSC differentiation, preventing hematopoiesis. Mechanistically, ARID4B-deficient HSCs self-express KITLG and overexpress KIT. As to downstream pathways of KITLG/KIT signaling, inhibition of Src family kinases rescues the HSC differentiation defect elicited by ARID4B loss. In summary, the intrinsic ARID4B-KITLG/KIT-Src axis is an HSPC regulatory program that enables the differentiation state, while KIT stimulation by KITLG from niche cells preserves the HSPC undifferentiated pool.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Endocrinology and Physiology
  • Stem Cells and Developmental Biology

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb