Product Citations: 11

Germinal centers (GCs) are sites where plasma and memory B cells form to generate high-affinity, Ig class-switched antibodies. Specialized stromal cells called follicular dendritic cells (FDCs) are essential for GC formation. During systemic Salmonella Typhimurium (STm) infection GCs are absent, whereas extensive extrafollicular and switched antibody responses are maintained. The mechanisms that underpin the absence of GC formation are incompletely understood. Here, we demonstrate that STm induces a reversible disruption of niches within the splenic microenvironment, including the T and B cell compartments and the marginal zone. Alongside these effects after infection, mature FDC networks are strikingly absent, whereas immature FDC precursors, including marginal sinus pre-FDCs (MadCAM-1+) and perivascular pre-FDCs (PDGFRβ+) are enriched. As normal FDC networks re-establish, extensive GCs become detectable throughout the spleen. Therefore, the reorganization of FDC networks and the loss of GC responses are key, parallel features of systemic STm infections.
© 2023 The Authors.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Innate type 2 immunity controls hair follicle commensalism by Demodex mites.

In Immunity on 11 October 2022 by Ricardo-Gonzalez, R. R., Kotas, M. E., et al.

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Early detection of SARS-CoV-2 in circulating immune cells in a mouse model

Preprint on BioRxiv : the Preprint Server for Biology on 30 June 2021 by Geng, T., Keilich, S., et al.

h4>ABSTRACT/h4> SARS-CoV-2 infects the respiratory tract, lung and then other organs. However, its pathogenesis remains largely unknown. We used RareScope™ Fluorescence Light Sheet Microscopy (FLSM) and fluorescent in situ hybridization of RNA (RNA-FISH) to detect SARS-CoV-2 RNA and dissemination kinetics in mouse blood circulation. By RNA-FISH, we found that SARS-CoV-2 RNA-positive leukocytes, including CD11c cells, appeared as early as one day after infection and continued through day 10 post infection. Our data suggest that SARS-CoV-2-permissive leukocytes contribute to systemic viral dissemination, and RNA-FISH combined with FLSM can be utilized as a sensitive tool for SARS-CoV-2 detection in blood specimens.

  • Mus musculus (House mouse)
  • COVID-19
  • Immunology and Microbiology

XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis.

In Nature Medicine on 1 June 2021 by Deczkowska, A., David, E., et al.

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are prevalent liver conditions that underlie the development of life-threatening cirrhosis, liver failure and liver cancer. Chronic necro-inflammation is a critical factor in development of NASH, yet the cellular and molecular mechanisms of immune dysregulation in this disease are poorly understood. Here, using single-cell transcriptomic analysis, we comprehensively profiled the immune composition of the mouse liver during NASH. We identified a significant pathology-associated increase in hepatic conventional dendritic cells (cDCs) and further defined their source as NASH-induced boost in cycling of cDC progenitors in the bone marrow. Analysis of blood and liver from patients on the NAFLD/NASH spectrum showed that type 1 cDCs (cDC1) were more abundant and activated in disease. Sequencing of physically interacting cDC-T cell pairs from liver-draining lymph nodes revealed that cDCs in NASH promote inflammatory T cell reprogramming, previously associated with NASH worsening. Finally, depletion of cDC1 in XCR1DTA mice or using anti-XCL1-blocking antibody attenuated liver pathology in NASH mouse models. Overall, our study provides a comprehensive characterization of cDC biology in NASH and identifies XCR1+ cDC1 as an important driver of liver pathology.

  • Immunology and Microbiology
  • Pathology

Endothelial repair is dependent on CD11c+ leukocytes to establish regrowing endothelial sheets with high cellular density.

In Journal of Leukocyte Biology on 1 January 2019 by Yrlid, U., Holm, M., et al.

Endothelial injury makes the vessel wall vulnerable to cardiovascular diseases. Injured endothelium regenerates by collective sheet migration, that is, the endothelial cells coordinate their motion and regrow as a sheet of cells with retained cell-cell contacts into the wounded area. Leukocytes appear to be involved in endothelial repair in vivo; however, little is known about their identity and role in the reparative sheet migration process. To address these questions, we developed a high-quality en face technique that enables visualizing of leukocytes and endothelial cells simultaneously following an endoluminal scratch wound injury of the mouse carotid artery. We discovered that regrowing endothelium forms a broad proliferative front accompanied by CD11c+ leukocytes. Functionally, the leukocytes were dispensable for the initial migratory response of the regrowing endothelial sheet, but critical for the subsequent formation and maintenance of a front zone with high cellular density. Marker expression analyses, genetic fate mapping, phagocyte targeting experiments, and mouse knock-out experiments indicate that the CD11c+  leukocytes were mononuclear phagocytes with an origin from both Ly6Chigh and Ly6Clow monocytes. In conclusion, CD11c+ mononuclear phagocytes are essential for a proper endothelial regrowth following arterial endoluminal scratch injury. Promoting the endothelial-preserving function of CD11c+  leukocytes may be a strategy to enhance endothelial repair following surgical and endovascular procedures.
©2018 Society for Leukocyte Biology.

  • Immunology and Microbiology
View this product on CiteAb