Product Citations: 222

The microRNA miR-30a blocks adipose tissue fibrosis accumulation in obesity.

In The Journal of Clinical Investigation on 1 August 2025 by Saha, P. K., Sharp, R., et al.

White adipose tissue (WAT) fibrosis occurring in obesity contributes to the inflammatory and metabolic comorbidities of insulin resistance and type 2 diabetes, yet the mechanisms involved remain poorly understood. Here, we report a role for the broadly conserved miRNA miR-30a as a regulator of WAT fibrosis and systemic glucose metabolism. Mice modified to express miR-30a at elevated levels in adipose tissues maintain insulin sensitivity coupled with reduced fatty liver disease when fed a high-fat diet. These effects were attributable to cell-autonomous functions of miR-30a that potently increase expression of adipocyte-specific genes. Proteomic screening revealed miR-30a limits profibrotic programs in subcutaneous WAT, at least in part, by repressing PAI-1, a dominant regulator of fibrinolysis and biomarker of insulin resistance. Conversely, mouse adipocytes lacking miR-30a exhibited greater expression of fibrosis markers with disrupted cellular metabolism. Lastly, miR-30a expression negatively correlates with PAI-1 levels in subcutaneous WAT from people with obesity, further supporting an antifibrotic role for miR-30a. Together, these findings uncover miR-30a as a critical regulator of adipose tissue fibrosis that predicts metabolically healthy obesity in people and mice.

The effect of immune checkpoint inhibitors is extremely limited in patients with pancreatic ductal adenocarcinoma (PDAC) due to the suppressive tumor immune microenvironment. Autophagy, which has been shown to play a role in antitumor immunity, has been proposed as a therapeutic target for PDAC. In this study, single-cell RNA sequencing of autophagy-deficient murine PDAC tumors revealed that autophagy inhibition in cancer cells induced dendritic cell (DC) activation. Analysis of human PDAC tumors substantiated a negative correlation between autophagy and DC activation signatures. Mechanistically, autophagy inhibition increased the intracellular accumulation of tumor antigens, which could activate DCs. Administration of chloroquine, an autophagy inhibitor, in combination with Flt3 ligand-induced DC infiltration inhibited tumor growth and increased tumor-infiltrating T lymphocytes. However, autophagy inhibition in cancer cells also induced CD8+ T-cell exhaustion with high expression of immune checkpoint LAG3. A triple-therapy comprising chloroquine, Flt3 ligand, and an anti-LAG3 antibody markedly reduced tumor growth in orthotopic syngeneic PDAC mouse models. Thus, targeting autophagy in cancer cells and activating DCs sensitize PDAC tumors to immune checkpoint inhibitor therapy, warranting further development of this treatment approach to overcome immunosuppression in pancreatic cancer. Significance: Inhibiting autophagy in pancreatic cancer cells enhances intracellular accumulation of tumor antigens to induce dendritic cell activation and synergizes with immunotherapy to markedly inhibit the growth of pancreatic ductal adenocarcinoma.
©2024 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Cell Biology
  • Immunology and Microbiology

Candida albicans is a fungal constituent of the human gastrointestinal microbiota that can tolerate acidic environments like the stomach, where it can be associated with ulcers and chronic gastritis. In mice, C. albicans induces gastritis without concurrent intestinal inflammation, suggesting that the stomach is particularly prone to fungal infection. We previously showed that C. albicans invasion in the limiting ridge does not extend to or elicit an inflammatory response in the adjacent glandular region, indicating regionalized gastritis in the murine stomach. However, the molecular pathways involved in the host response to C. albicans specifically in the limiting ridge have not been investigated. Here, we found that gastric dysbiosis was associated with C. albicans limiting ridge colonization and gastritis. We isolated the limiting ridge and evaluated the expression of over 90 genes involved in mucosal responses. C. albicans infection triggered a type 3 immune response marked by elevated Il17a, Il17f, Il1b, Tnf, and Il36g, as well as an upregulation of Il12a, Il4, Il10, and l13. Chemokine gene induction (including Ccl2, Ccl3, Ccl4, Ccl1l, Cxcl1, Cxcl2, Cxcl9, and Cxcl10) coincided with an influx of neutrophils, monocytes/macrophages, and eosinophils. Hyphal invasion caused tissue damage, epithelial remodeling, and upregulation of genes linked to epithelium signaling and antimicrobial responses in the limiting ridge. Our findings support a need for continued exploration into the interactions between the immunological milieu, the host microbiota, and clinical interventions such as the use of antibiotics and immunotherapeutic agents and their collective impact on invasive candidiasis risk.

  • FC/FACS
  • Immunology and Microbiology

Dynamic glycolytic reprogramming effects on dendritic cells in pancreatic ductal adenocarcinoma.

In Journal of Experimental & Clinical Cancer Research : CR on 30 September 2024 by Zhang, B., Ohuchida, K., et al.

Pancreatic ductal adenocarcinoma tumors exhibit resistance to chemotherapy, targeted therapies, and even immunotherapy. Dendritic cells use glucose to support their effector functions and play a key role in anti-tumor immunity by promoting cytotoxic CD8+ T cell activity. However, the effects of glucose and lactate levels on dendritic cells in pancreatic ductal adenocarcinoma are unclear. In this study, we aimed to clarify how glucose and lactate can impact the dendritic cell antigen-presenting function and elucidate the relevant mechanisms.
Glycolytic activity and immune cell infiltration in pancreatic ductal adenocarcinoma were evaluated using patient-derived organoids and resected specimens. Cell lines with increased or decreased glycolysis were established from KPC mice. Flow cytometry and single-cell RNA sequencing were used to evaluate the impacts on the tumor microenvironment. The effects of glucose and lactate on the bone marrow-derived dendritic cell antigen-presenting function were detected by flow cytometry.
The pancreatic ductal adenocarcinoma tumor microenvironment exhibited low glucose and high lactate concentrations from varying levels of glycolytic activity in cancer cells. In mouse transplantation models, tumors with increased glycolysis showed enhanced myeloid-derived suppressor cell infiltration and reduced dendritic cell and CD8+ T cell infiltration, whereas tumors with decreased glycolysis displayed the opposite trends. In three-dimensional co-culture, increased glycolysis in cancer cells suppressed the antigen-presenting function of bone marrow-derived dendritic cells. In addition, low-glucose and high-lactate media inhibited the antigen-presenting and mitochondrial functions of bone marrow-derived dendritic cells.
Our study demonstrates the impact of dynamic glycolytic reprogramming on the composition of immune cells in the tumor microenvironment of pancreatic ductal adenocarcinoma, especially on the antigen-presenting function of dendritic cells.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Myeloid cells are the first line of defence against pathogens. Mitochondrial apoptosis signalling is a crucial regulator of myeloid cell lifespan and modulates the function of myeloid cells. The anti-apoptotic protein BCL-2-family protein BCL2A1/A1/BFL-1 is strongly upregulated in inflammation in macrophages. We analysed the contribution of A1 to apoptosis regulation in a conditional system of in vitro differentiation of murine macrophages from immortalised progenitors. We disabled the expression of A1 by targeting all murine A1 isoforms in the genome. Specific inhibitors were used to inactivate other anti-apoptotic proteins. Macrophage progenitor survival mainly depended on the anti-apoptotic proteins MCL-1, BCL-XL and A1 but not BCL-2. Deletion of A1 on its own had little effect on progenitor cell survival but was sensitised to cell death induction when BCL-XL or MCL-1 was neutralised. In progenitors, A1 was required for survival in the presence of the inflammatory stimulus LPS. Differentiated macrophages were resistant to inhibition of single anti-apoptotic proteins, but A1 was required to protect macrophages against inhibition of either BCL-XL or MCL-1; BCL-2 only had a minor role in these cells. Cell death by neutralisation of anti-apoptotic proteins completely depended on BAX with a small contribution of BAK only in progenitors in the presence of LPS. A1 and NOXA appeared to stabilise each other at the posttranscriptional level suggesting direct binding. Co-immunoprecipitation experiments showed the binding of A1 to NOXA and BIM. Interaction between A1 and Noxa may indirectly prevent neutralisation and destabilization of MCL-1. Our findings suggest a unique role for A1 as a modulator of survival in the macrophage lineage in concert with MCL-1 and BCL-XL, especially in a pro-inflammatory environment.
© 2024. The Author(s).

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb