Product Citations: 86

1 image found

Neutrophils, an essential innate immune cell type with a short lifespan, rely on continuous replenishment from bone marrow (BM) precursors. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the molecular regulators involved in the differentiation process remain poorly understood. Here we developed a random forest-based machine-learning pipeline, NeuRGI (Neutrophil Regulatory Gene Identifier), which utilized Positive-Unlabeled Learning (PU-learning) and neural network-based in silico gene knockout to identify neutrophil regulators. We interrogated features including gene expression dynamics, physiological characteristics, pathological relatedness, and gene conservation for the model training. Our identified pipeline leads to identifying Mitogen-Activated Protein Kinase-4 (MAP4K4) as a novel neutrophil differentiation regulator. The loss of MAP4K4 in hematopoietic stem cells and progenitors in mice induced neutropenia and impeded the differentiation of neutrophils in the bone marrow. By modulating the phosphorylation level of proteins involved in cell apoptosis, such as STAT5A, MAP4K4 delicately regulates cell apoptosis during the process of neutrophil differentiation. Our work presents a novel regulatory mechanism in neutrophil differentiation and provides a robust prediction model that can be applied to other cellular differentiation processes.
Copyright: © 2025 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • FC/FACS
  • Mus musculus (House mouse)

RNA translational regulation by CPEB4 orchestrates platelet function and pathophysiology

Preprint on Research Square on 15 January 2025 by Navarro, P., Hurtado, B., et al.

Abstract Platelets are highly specialized anucleate cells that play crucial roles in haemostasis, inflammation and disease. Recent data suggest that mRNA translational control is the primary mechanism of gene regulation in platelets. This study unveils a novel pathway to control mRNA translation and protein expression in platelets via the mRNA binding protein CPEB4. We found high CPEB4 expression levels in human and mouse platelets, colocalizing with cytoskeletal proteins. In vivo loss-of-function studies, using the megakaryocytic lineage-specific Pf4-Cre transgenic mice crossed with a strain containing loxP-flanked CPEB4 (Pf4+:Cpeb4–/– mice), revealed a significant reduction of platelet activation and aggregation. These effects were specific to mature platelets, as CPEB4 deficiency did not significantly impact megakaryocytopoiesis. Functional assays, including tail bleeding and collagen-induced embolism, demonstrated impaired coagulation in Pf4+:Cpeb4–/– mice compared to controls. Furthermore, proteomics analysis of resting and activated platelets from Pf4–:Cpeb4+/+ and Pf4+:Cpeb4–/– mice identified a molecular signature of proteins and networks regulated by CPEB4, including those involved in haemostasis and platelet clearance. Our study reveals CPEB4-mediated mRNA translational regulation as a novel fine-tuning mechanism for modulating protein synthesis in platelets, with significant functional consequences in both physiological and pathological conditions.

  • Biochemistry and Molecular biology
  • Genetics

α-Synuclein Deletion Impairs Platelet Function: A Role for SNARE Complex Assembly.

In Cells on 17 December 2024 by Sennett, C., Jia, W., et al.

Granule secretion is an essential platelet function that contributes not only to haemostasis but also to wound healing, inflammation, and atherosclerosis. Granule secretion from platelets is facilitated, at least in part, by Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex-mediated granule fusion. Although α-synuclein is a protein known to modulate the assembly of the SNARE complex in other cells, its role in platelet function remains poorly understood. In this study, we provide evidence that α-synuclein is critical for haemostasis using α-synuclein-deficient (-/-) mice. The genetic deletion of α-synuclein resulted in impaired platelet aggregation, secretion, and adhesion in vitro. In vivo haemostasis models showed that α-synuclein-/- mice had prolonged bleeding times and activated partial thromboplastin times (aPTTs). Mechanistically, platelet activation induced α-synuclein serine (ser) 129 phosphorylation and re-localisation to the platelet membrane, accompanied by an increased association with VAMP 8, syntaxin 4, and syntaxin 11. This phosphorylation was calcium (Ca2+)- and RhoA/ROCK-dependent and was inhibited by prostacyclin (PGI2). Our data suggest that α-synuclein regulates platelet secretion by facilitating SNARE complex formation.

  • Cell Biology

Newly identified roles for PIEZO1 mechanosensor in controlling normal megakaryocyte development and in primary myelofibrosis.

In American Journal of Hematology on 1 March 2024 by Abbonante, V., Karkempetzaki, A. I., et al.

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.
© 2024 The Authors. American Journal of Hematology published by Wiley Periodicals LLC.

  • Mus musculus (House mouse)

Bone marrow ablation is routinely performed before hematopoietic stem cell transplantation (HSCT). Hematopoietic stem and progenitor cells (HSPCs) require a stable bone marrow microenvironment to expand and refill the peripheral blood cell pool after ablation. Roundabout guidance receptor 4 (Robo4) is a transmembrane protein exclusive to endothelial cells and is vital in preserving vascular integrity. Hence, the hypothesis is that Robo4 maintains the integrity of bone marrow endothelial cells following radiotherapy. We created an endothelial cell injury model with γ-radiation before Robo4 gene manipulation using lentiviral-mediated RNAi and gene overexpression techniques. We demonstrate that Robo4 and specific mesenchymal proteins (Fibronectin, Vimentin, αSma, and S100A4) are upregulated in endothelial cells exposed to irradiation (IR). We found that Robo4 depletion increases the expression of endoglin (CD105), an auxiliary receptor for the transforming growth factor (TGF-β) family of proteins, and promotes endothelial-to-mesenchymal transition (End-MT) through activation of both the canonical (Smad) and non-canonical (AKT/NF-κB) signaling pathways to facilitate Snail1 activation and its nuclear translocation. Endothelial Robo4 overexpression stimulates the expression of immunoglobulin-like adhesion molecules (ICAM-1 and VCAM-1) and alleviates irradiation-induced End-MT. Our coculture model showed that transcriptional downregulation of endothelial Robo4 reduces HSPC proliferation and increases HSC quiescence and apoptosis. However, Robo4 overexpression mitigated the damaged endothelium's suppressive effects on HSC proliferation and differentiation. These findings indicate that by controlling End-MT, Robo4 preserves microvascular integrity after radiation preconditioning, protects endothelial function, and lessens the inhibitory effect of damaged endothelium on hematopoietic reconstitution.
© 2024. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology
View this product on CiteAb