Product Citations: 10

Platelets are indispensable for alveolar development in neonatal mice.

In Frontiers in Pediatrics on 27 August 2022 by Huang, Z., Lin, B., et al.

Previous studies suggest that platelets are involved in fetal and adult lung development, but their role in postnatal lung development especially after premature birth is elusive. There is an urgent need to scrutinize this topic because the incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease after premature birth, remains high. We have previously shown impaired platelet biogenesis in infants and rats with BPD. In this study, we investigated the role of anti-CD41 antibody-induced platelet depletion during normal postnatal lung development and thrombopoietin (TPO)-induced platelet biogenesis in mice with experimental BPD. We demonstrate that platelet deficient mice develop a BPD-like phenotype, characterized by enlarged alveoli and vascular remodeling of the small pulmonary arteries, resulting in pulmonary arterial hypertension (PAH)-induced right ventricular hypertrophy (RVH). Vascular remodeling was potentially caused by endothelial dysfunction demonstrated by elevated von Willebrand factor (vWF) concentration in plasma and reduced vWF staining in lung tissue with platelet depletion. Furthermore, TPO-induced platelet biogenesis in mice with experimental BPD improved alveolar simplification and ameliorated vascular remodeling. These findings demonstrate that platelets are indispensable for normal postnatal lung development and attenuation of BPD, probably by maintaining endothelial function.
Copyright © 2022 Huang, Lin, Han, Wang, Zhong, Wagenaar, Yang and Chen.

Involvement of P2Y12 receptors in a nitroglycerin-induced model of migraine in male mice.

In British Journal of Pharmacology on 1 December 2021 by Gölöncsér, F., Baranyi, M., et al.

P2Y12 receptors regulate different forms of pain and inflammation. In this study, we investigated the participation of P2Y12 receptors in an animal model of migraine.
We tested the effect of the centrally administered selective P2Y12 antagonist PSB-0739 and P2Y12 receptor gene (P2ry12-/- ) deficiency in acute nitroglycerin-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 receptors during migraine-like pain.
Nitroglycerin induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis. Similar changes were also observed in P2Y12 gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice. Furthermore, PSB-0739 was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and trigeminal nucleus caudalis, and decreased the levels of dopamine and 5-hydroxytryptamine in C1-C2 in wild-type mice. Nitroglycerin treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P up-regulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated nitroglycerin-induced thermal hypersensitivity and head grooming time in mice.
Our findings show that acute inhibition of P2Y12 receptors alleviates migraine-like pain in mice by modulating the expression of c-fos and that platelet P2Y12 receptors might contribute to this effect. Thus the blockade of P2Y12 receptors may have therapeutic potential against migraine.
© 2021 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  • Pharmacology

Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice.

In Annals of Neurology on 1 November 2021 by Villanueva, E. B., Tresse, E., et al.

Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aβ) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation.
IFN-β knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling.
Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-β loss. Independently of α-syn expression, lack of IFN-β alone induced Aβ plaques, pTau tangles, and LB-like Aβ+ /pTau+ inclusion bodies and neuroinflammation. IFN-β loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-β signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aβ and pTau accumulation.
These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-β/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.
© 2021 American Neurological Association.

  • Mus musculus (House mouse)
  • Neuroscience

Hepatic platelet accumulation contributes to acetaminophen (APAP)-induced liver injury (AILI). However, little is known about the molecular pathways involved in platelet recruitment to the liver and whether targeting such pathways could attenuate AILI.
Mice were fasted overnight before intraperitoneally (i.p.) injected with APAP at a dose of 210 mg/kg for male mice and 325 mg/kg for female mice. Platelets adherent to Kupffer cells were determined in both mice and patients overdosed with APAP. The impact of α-chitinase 3-like-1 (α-Chi3l1) on alleviation of AILI was determined in a therapeutic setting, and liver injury was analyzed.
The present study unveiled a critical role of Chi3l1 in hepatic platelet recruitment during AILI. Increased Chi3l1 and platelets in the liver were observed in patients and mice overdosed with APAP. Compared to wild-type (WT) mice, Chil1-/- mice developed attenuated AILI with markedly reduced hepatic platelet accumulation. Mechanistic studies revealed that Chi3l1 signaled through CD44 on macrophages to induce podoplanin expression, which mediated platelet recruitment through C-type lectin-like receptor 2. Moreover, APAP treatment of Cd44-/- mice resulted in much lower numbers of hepatic platelets and liver injury than WT mice, a phenotype similar to that in Chil1-/- mice. Recombinant Chi3l1 could restore hepatic platelet accumulation and AILI in Chil1-/- mice, but not in Cd44-/- mice. Importantly, we generated anti-Chi3l1 monoclonal antibodies and demonstrated that they could effectively inhibit hepatic platelet accumulation and AILI.
We uncovered the Chi3l1/CD44 axis as a critical pathway mediating APAP-induced hepatic platelet recruitment and tissue injury. We demonstrated the feasibility and potential of targeting Chi3l1 to treat AILI.
ZS received funding from NSFC (32071129). FWL received funding from NIH (GM123261). ALFSG received funding from NIDDK (DK 058369). ZA received funding from CPRIT (RP150551 and RP190561) and the Welch Foundation (AU-0042-20030616). CJ received funding from NIH (DK122708, DK109574, DK121330, and DK122796) and support from a University of Texas System Translational STARs award. Portions of this work were supported with resources and the use of facilities of the Michael E. DeBakey VA Medical Center and funding from Department of Veterans Affairs I01 BX002551 (Equipment, Personnel, Supplies). The contents do not represent the views of the US Department of Veterans Affairs or the US Government.

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb