Product Citations: 71

Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4).
We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments.
The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells.
The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB.
This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.

  • FC/FACS
  • Mus musculus (House mouse)
  • Immunology and Microbiology

Exercise rejuvenates microglia and reverses T cell accumulation in the aged female mouse brain.

In Aging Cell on 1 July 2024 by Chauquet, S., Willis, E. F., et al.

Slowing and/or reversing brain ageing may alleviate cognitive impairments. Previous studies have found that exercise may mitigate cognitive decline, but the mechanisms underlying this remain largely unclear. Here we provide unbiased analyses of single-cell RNA sequencing data, showing the impacts of exercise and ageing on specific cell types in the mouse hippocampus. We demonstrate that exercise has a profound and selective effect on aged microglia, reverting their gene expression signature to that of young microglia. Pharmacologic depletion of microglia further demonstrated that these cells are required for the stimulatory effects of exercise on hippocampal neurogenesis but not cognition. Strikingly, allowing 18-month-old mice access to a running wheel did by and large also prevent and/or revert T cell presence in the ageing hippocampus. Taken together, our data highlight the profound impact of exercise in rejuvenating aged microglia, associated pro-neurogenic effects and on peripheral immune cell presence in the ageing female mouse brain.
© 2024 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

  • Mus musculus (House mouse)
  • Cell Biology
  • Immunology and Microbiology
  • Neuroscience

IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide.

In Frontiers in Immunology on 2 January 2024 by Silva, B. J. A., Krogstad, P. A., et al.

The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified.
Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy.
Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity.
Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Copyright © 2023 Silva, Krogstad, Teles, Andrade, Rajfer, Ferrini, Yang, Bloom and Modlin.

  • COVID-19
  • Immunology and Microbiology

Lineage Plasticity in SCLC Generates Non-Neuroendocrine Cells Primed for Vasculogenic Mimicry.

In Journal of Thoracic Oncology : Official Publication of the International Association for the Study of Lung Cancer on 1 October 2023 by Pearsall, S. M., Williamson, S. C., et al.

Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell-derived explant (CDX) models and GEMMs.
We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions.
We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin β1-dependent process.
We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future.
Copyright © 2023 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  • Cancer Research
  • Endocrinology and Physiology

Psoriasis is a chronic inflammatory skin disease. IL-23 plays a critical role in its pathogenesis by inducing production of IL-17A from pathological Th17 cells and IL-17A-producing γδ T cells. However, the mechanisms regulating the IL-23/IL-17 axis in psoriasis are incompletely understood. In this study, we show that, in comparison with wild-type mice, those deficient in the CD96 immunoreceptor had lower production of IL-17A in their dermal γδ T cells and milder psoriasis-like dermatitis after topical application of imiquimod (IMQ). Moreover, transfer of CD96-deficient dermal γδ T cells into the skin of Rag1-deficient mice resulted in them developing milder IMQ-induced dermatitis compared with Rag1-deficient mice transferred with wild-type dermal γδ T cells. In γδ T cells in vitro, CD96 provides a costimulatory signal for the production of IL-23-induced IL-17A. In mice given an anti-CD96 neutralizing Ab, IL-17A production from dermal γδ T cells decreased and IMQ-induced dermatitis was milder compared with mice given a control Ab. These results suggest that CD96 is a potential molecular target for the treatment of psoriasis.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology
View this product on CiteAb