Product Citations: 4

Stepwise transmigration of T- and B cells through a perivascular channel in high endothelial venules.

In Life Science Alliance on 1 August 2021 by Choe, K., Moon, J., et al.

High endothelial venules (HEVs) effectively recruit circulating lymphocytes from the blood to lymph nodes. HEVs have endothelial cells (ECs) and perivascular sheaths consisting of fibroblastic reticular cells (FRCs). Yet, post-luminal lymphocyte migration steps are not well elucidated. Herein, we performed intravital imaging to investigate post-luminal T- and B-cell migration in popliteal lymph node, consisting of trans-EC migration, crawling in the perivascular channel (a narrow space between ECs and FRCs) and trans-FRC migration. The post-luminal migration of T cells occurred in a PNAd-dependent manner. Remarkably, we found hot spots for the trans-EC and trans-FRC migration of T- and B cells. Interestingly, T- and B cells preferentially shared trans-FRC migration hot spots but not trans-EC migration hot spots. Furthermore, the trans-FRC T-cell migration was confined to fewer sites than trans-EC T-cell migration, and trans-FRC migration of T- and B cells preferentially occurred at FRCs covered by CD11c+ dendritic cells in HEVs. These results suggest that HEV ECs and FRCs with perivascular DCs delicately regulate T- and B-cell entry into peripheral lymph nodes.
© 2021 Choe et al.

  • Immunology and Microbiology

Epithelial apical glycosylation changes associated with thin endometrium in women with infertility - a pilot observational study.

In Reproductive Biology and Endocrinology : RB&E on 15 May 2021 by Ziganshina, M. M., Dolgushina, N. V., et al.

Low endometrial receptivity is one of the major factors affecting successful implantation in assisted reproductive technologies (ART). Infertile patients with thin endometrium have a significantly lower cumulative clinical pregnancy rate than patients with normal endometrium. Molecular pathophysiology of low receptivity of thin endometrium remains understudied. We have investigated composition of glycocalyx of the apical surface of luminal and glandular epithelial cells in thin endometrium of infertile women.
Thirty-two patients with tubal-peritoneal infertility undergoing in vitro fertilization (IVF) were included in the study. Endometrial samples were obtained in a natural menstrual cycle. Patients were divided into two groups: patients with normal endometrium (≥8 mm) and with thin endometrium (< 8 mm). Histochemical and immunohistochemical analysis of paraffin-embedded endometrial samples was performed using six biotinylated lectins (UEA-I, MAL-II, SNA, VVL, ECL, Con A) and anti-LeY and MECA-79 monoclonal antibodies (MAbs).
Complex glycans analysis taking into account the adjusted specificity of glycan-binding MAbs revealed 1.3 times less expression of MECA-79 glycans on the apical surface of the luminal epithelial cells of thin endometrium compared to normal endometrium; this deficiency may adversely affect implantation, since MECA-79 glycans are a ligand of L-selectin and mediate intercellular interactions. The glycans containing a type-2 unit Galβ1-4GlcNAcβ (LacNAc) but lacking sulfo-residues at 6-OH of GlcNAcβ, and binding to MECA-79 MAbs were found; they can be considered as potential markers of endometrium receptivity. Expression of the lectins-stained glycans on the apical surfaces of the luminal and glandular epithelial cells did not differ significantly. Correlation between the expression of difucosylated oligosaccharide LeY on the apical surfaces of the luminal and glandular epithelial cells was found in patients with thin endometrium and recurrent implantation failure. A similar relationship was shown for mannose-rich glycans.
Specific features of key glycans expression in epithelial compartments of thin endometrium may be essential for morphogenesis of the endometrial functional layer and explain its low receptivity.

Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis.

In Brain on 1 June 2013 by Agrawal, S. M., Williamson, J., et al.

Inflammatory perivascular cuffs are comprised of leucocytes that accumulate in the perivascular space around post-capillary venules before their infiltration into the parenchyma of the central nervous system. Inflammatory perivascular cuffs are commonly found in the central nervous system of patients with multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis. Leucocytes that accumulate in the perivascular space secrete matrix metalloproteinases that aid their transmigration into the neural parenchyma. We described previously that the upstream inducer of matrix metalloproteinase expression, extracellular matrix metalloproteinase inducer (CD147), was elevated in experimental autoimmune encephalomyelitis, and that its inhibition reduced leucocyte entry into the central nervous system. Here we investigated whether the expression of extracellular matrix metalloproteinase inducer varies with the temporal evolution of lesions in murine experimental autoimmune encephalomyelitis, whether it was uniformly upregulated across multiple sclerosis specimens, and whether it was a feature of inflammatory perivascular cuffs in multiple sclerosis lesions. In experimental autoimmune encephalomyelitis, elevation of extracellular matrix metalloproteinase inducer was correlated with the appearance and persistence of clinical signs of disease. In both murine and human samples, extracellular matrix metalloproteinase inducer was detected on endothelium in healthy and disease states but was dramatically increased in and around inflammatory perivascular cuffs on leucocytes, associated with matrix metalloproteinase expression, and on resident cells including microglia. Leucocyte populations that express extracellular matrix metalloproteinase inducer in multiple sclerosis lesions included CD4+ and CD8+ T lymphocytes, B lymphocytes and monocyte/macrophages. The extra-endothelial expression of extracellular matrix metalloproteinase inducer was a marker of the activity of lesions in multiple sclerosis, being present on leucocyte-containing perivascular cuffs but not in inactive lesions. By using a function-blocking antibody, we implicate extracellular matrix metalloproteinase inducer in the adhesion of leucocytes to endothelial cells and determined that its activity was more crucial on leucocytes than on endothelium in leucocyte-endothelial cell engagement in vitro. Extracellular matrix metalloproteinase inducer activity regulated the level of alpha 4 integrin on leucocytes through a mechanism associated with nuclear factor κB signalling. Blocking extracellular matrix metalloproteinase inducer attenuated the transmigration of monocytes and B lymphocytes across a model of the blood-brain barrier in culture. In summary, we describe the prominence of extracellular matrix metalloproteinase inducer in central nervous system inflammatory perivascular cuffs, emphasize its dual role in matrix metalloproteinase induction and leucocyte adhesion, and highlight the elevation of extracellular matrix metalloproteinase inducer as an orchestrator of the infiltration of leucocytes into the central nervous system parenchyma.

  • Neuroscience

Lenalidomide is a thalidomide analogue that may serve as an adjunctive therapy for treatment-refractory cutaneous lupus erythematosus (CLE).
We evaluate the use of lenalidomide in CLE and describe the skin and circulating leukocyte profile of treatment-refractory patients before and after treatment.
Five subjects were treated with lenalidomide in an unblinded open-label study. Immunohistochemistry of skin was performed for T-cell markers, glycosaminoglycans, and CXCL10, an interferon-inducible chemokine, before and after treatment. Immunophenotyping and measurement of interferon-inducible genes from peripheral blood mononuclear cells was also performed before and after treatment.
Four subjects demonstrated clinical improvement of their skin, however one of these responders subsequently developed symptoms of systemic lupus erythematosus. Small changes in rare circulating leukocyte subsets, plasmacytoid dendritic cells, and regulatory T cells were observed with treatment and may correlate with clinical response. Treatment was associated with increased circulating HLA-DR expression and decreased markers of interferon-mediated pathways, regardless of clinical response.
Our results are limited by small sample size and the measurement of rare populations of circulating cell subsets.
Lenalidomide may have usefulness as therapy for severe, treatment-refractory CLE. However, our preliminary data suggest that lenalidomide may activate T cells and trigger systemic disease in some patients with CLE. We also saw a different histologic and circulating leukocyte phenotype in the nonresponding subject. Further characterization of the skin and circulating leukocyte profile of treatment-refractory patients will improve our understanding of CLE.
Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

View this product on CiteAb