Product Citations: 8

E3 ubiquitin ligase Cbl-b is involved in the maintenance of a balance between immunity and tolerance. Mice lacking Cbl-b are highly susceptible to experimental autoimmune encephalomyelitis (EAE), a Th17-mediated autoimmune disease. However, how Cbl-b regulates Th17 cell responses remains unclear. In this study, utilizing adoptive transfer and cell type-specific Cblb knockout strains, we show that Cbl-b expression in macrophages, but not T cells or dendritic cells (DCs), restrains the generation of pathogenic Th17 cells and the development of EAE. Cbl-b inhibits IL-6 production by macrophages that is induced by signaling from CARD9-dependent C-type lectin receptor (CLR) pathways, which directs T cells to generate pathogenic Th17 cells. Therefore, our data unveil a previously unappreciated function for Cbl-b in the regulation of pathogenic Th17 responses.
© 2022 The Author(s).

Two main stem cell pools exist in the postnatal mammalian brain that, although they share some "stemness" properties, also exhibit significant differences. Multipotent neural stem cells survive within specialized microenvironments, called niches, and they are vulnerable to ageing. Oligodendroglial lineage-restricted progenitor cells are widely distributed in the brain parenchyma and are more resistant to the effects of ageing. Here, we create polymorphic neural stem cell cultures and allow cells to progress towards the neuronal and the oligodendroglial lineage. We show that the divergence of cell fate is accompanied by a divergence in the properties of progenitors, which reflects their adaptation to life in the niche or the parenchyma. Neurogenesis shows significant spatial restrictions and a dependence on laminin, a major niche component, while oligodendrogenesis shows none of these constraints. Furthermore, the blocking of integrin-β1 leads to opposing effects, reducing neurogenesis and enhancing oligodendrogenesis. Therefore, polymorphic neural stem cell assays can be used to investigate the divergence of postnatal brain stem cells and also to predict the in vivo effects of potential therapeutic molecules targeting stem and progenitor cells, as we do for the microneurotrophin BNN-20.

  • Mus musculus (House mouse)
  • Cell Biology
  • Stem Cells and Developmental Biology

Prostaglandins (PGs) are typical lipid mediators that play a role in homeostasis and disease. They are synthesized from arachidonic acid by cyclooxygenase 1 (COX1) and COX2. Although COX2 has been reported to be upregulated in the spinal cord after nerve injury, its expression and functional roles in neuropathic pain remain unclear. In this study, we investigated the expression of Cox2, PGI2 synthase (Pgis), and prostaglandin I2 receptor (IP receptor) mRNA in the rat spinal cord after spared nerve injury (SNI). Levels of Cox2 and Pgis mRNA increased in endothelial cells from 24 to 48 h after nerve injury. IP receptor mRNA was constitutively expressed in dorsal horn neurons. A COX2 inhibitor and IP receptor antagonists attenuated pain behavior in the early phase of neuropathic pain. Furthermore, we examined the relationship between COX2 and tumor necrosis factor-α (TNFα) in the spinal cord of a rat SNI model. Levels of TNFα mRNA transiently increased in the spinal microglia 24 h after SNI. The TNF receptors Tnfr1 and Tnfr2 mRNA were colocalized with COX2. Intrathecal injection of TNFα induced Cox2 and Pgis mRNA expression in endothelial cells. These results revealed that microglia-derived TNFα induced COX2 and PGIS expression in spinal endothelial cells and that endothelial PGI2 played a critical role in neuropathic pain via neuronal IP receptor. These findings further suggest that the glia-endothelial cell interaction of the neurovascular unit via transient TNFα is involved in the generation of neuropathic pain.

  • Rattus norvegicus (Rat)
  • Neuroscience

Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.

  • IHC
  • Mus musculus (House mouse)
  • Genetics
  • Immunology and Microbiology

The role of TNF-α in mice with type 1- and 2- diabetes.

In PLoS ONE on 19 May 2012 by Koulmanda, M., Bhasin, M., et al.

Previously, we have demonstrated that short-term treatment of new onset diabetic Non-obese diabetic (NOD) mice, mice that are afflicted with both type 1 (T1D) and type 2 (T2D) diabetes with either Power Mix (PM) regimen or alpha1 antitrypsin (AAT) permanently restores euglycemia, immune tolerance to self-islets and normal insulin signaling.
To search for relevant therapeutic targets, we have applied genome wide transcriptional profiling and systems biology oriented bioinformatics analysis to examine the impact of the PM and AAT regimens upon pancreatic lymph node (PLN) and fat, a crucial tissue for insulin dependent glucose disposal, in new onset diabetic non-obese diabetic (NOD) mice. Systems biology analysis identified tumor necrosis factor alpha (TNF-α) as the top focus gene hub, as determined by the highest degree of connectivity, in both tissues. In PLNs and fat, TNF-α interacted with 53% and 32% of genes, respectively, associated with reversal of diabetes by previous treatments and was thereby selected as a therapeutic target. Short-term anti-TNF-α treatment ablated a T cell-rich islet-invasive and beta cell-destructive process, thereby enhancing beta cell viability. Indeed anti-TNF-α treatment induces immune tolerance selective to syngeneic beta cells. In addition to these curative effects on T1D anti-TNF-α treatment restored in vivo insulin signaling resulting in restoration of insulin sensitivity.
In short, our molecular analysis suggested that PM and AAT both may act in part by quenching a detrimental TNF-α dependent effect in both fat and PLNs. Indeed, short-term anti-TNF-α mAb treatment restored enduring euglycemia, self-tolerance, and normal insulin signaling.

View this product on CiteAb