Product Citations: 7

Topical Administration of a Soluble TNF Inhibitor Reduces Infarct Volume After Focal Cerebral Ischemia in Mice.

In Frontiers in Neuroscience on 24 August 2019 by Yli-Karjanmaa, M., Clausen, B. H., et al.

Tumor necrosis factor, which exists both as a soluble (solTNF) and a transmembrane (tmTNF) protein, plays an important role in post-stroke inflammation. The objective of the present study was to test the effect of topical versus intracerebroventricular administration of XPro1595 (a solTNF inhibitor) and etanercept (a solTNF and tmTNF inhibitor) compared to saline on output measures such as infarct volume and post-stroke inflammation in mice.
Adult male C57BL/6 mice were treated topically (2.5 mg/ml/1μl/h for 3 consecutive days) or intracerebroventricularly (1.25 mg/kg/0.5 ml, once) with saline, XPro1595, or etanercept immediately after permanent middle cerebral artery occlusion (pMCAO). Mice were allowed to survive 1 or 3 days. Infarct volume, microglial and leukocyte profiles, and inflammatory markers were evaluated.
We found that topical, and not intracerebroventricular, administration of XPro1595 reduced infarct volume at both 1 and 3 days after pMCAO. Etanercept showed no effect. We observed no changes in microglial or leukocyte populations. XPro1595 increased gene expression of P2ry12 at 1 day and Trem2 at 1 and 3 days, while decreasing Cx3cr1 expression at 1 and 3 days after pMCAO, suggesting a change in microglial activation toward a phagocytic phenotype.
Our data demonstrate that topical administration of XPro1595 for 3 consecutive days decreases infarct volumes after ischemic stroke, while modifying microglial activation and the inflammatory response post-stroke. This suggests that inhibitors of solTNF hold great promise for future neuroprotective treatment in ischemic stroke.

  • Neuroscience

Current therapy for rheumatoid arthritis (RA) relies on global suppression of the immune response or specific blockade of inflammatory cytokines. However, it is unclear how immunosuppressants affect patients with cancer. Therefore, in the present study, the effect of three biological agents, tofacitinib, anti-mouse IL-6 receptor antibody (MR16-1) and etanercept, which are used for the treatment of RA diseases, on a tumor-bearing mouse model was investigated. The effect of the three agents was examined using a mouse lung-metastasis model with the murine colon 26 cancer cell line. Lymphocyte subsets and natural killer (NK) cells in peripheral blood and spleen were analyzed using fluorescence-activated cell sorting, and the number of lung surface nodules was examined. In the continuous tofacitinib administration (15 mg/kg/day) group, the number of lung surface nodules was significantly increased compared with that of the vehicle-treated group (vehicle, 1.20±0.58; tofacitinib, 35.6±10.81; P<0.01). NK cell number in the blood and spleen of tofacitinib-treated mice was decreased 10-fold, and the percentage of cluster of differentiation (CD)11+CD27- NK cells was significantly reduced. MR16-1 [8 mg/mouse; once a week; intraperitoneal (i.p.)] or etanercept (1 mg/mouse; 3 times a week; i.p.) treatment did not affect the number of NK cells or lung metastasis. In the present study, immunosuppressants that target cytokines, including tofacitinib, were demonstrated to inhibit the proliferation and differentiation of NK cells, and exhibit the potential to promote cancer metastasis using a mouse model of lung metastasis.

  • Cancer Research

Persistent itch is a common symptom of allergic contact dermatitis (ACD) and represents a significant health burden. The chemokine CXCL10 is predominantly produced by epithelial cells during ACD. Although the chemokine CXCL10 and its receptor CXCR3 are implicated in the pathophysiology of ACD, it is largely unexplored for itch and pain accompanying this disorder. Here, we showed that CXCL10 and CXCR3 mRNA, protein, and signaling activity were upregulated in the dorsal root ganglion after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. CXCL10 directly activated a subset of cutaneous dorsal root ganglion neurons innervating the area of CHS through neuronal CXCR3. In behavioral tests, a CXCR3 antagonist attenuated spontaneous itch- but not pain-like behaviors directed to the site of CHS. Injection of CXCL10 into the site of CHS elicited site-directed itch- but not pain-like behaviors, but neither type of CXCL10-evoked behaviors was observed in control mice. These results suggest that CXCL10/CXCR3 signaling mediates allergic itch but not inflammatory pain in the context of skin inflammation. Thus, upregulation of CXCL10/CXCR3 signaling in sensory neurons may contribute to itch associated with ACD. Targeting the CXCL10/CXCR3 signaling might be beneficial for the treatment of allergic itch.

  • FC/FACS
  • Mus musculus (House mouse)

Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy.

In Molecular Therapy. Methods Clinical Development on 9 June 2015 by Wielgosz, M. M., Kim, Y. S., et al.

We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12-20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.

  • Mus musculus (House mouse)

Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis.

In Nature Immunology on 1 September 2013 by Yang, S., Wang, B., et al.

Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation.

  • Immunology and Microbiology
View this product on CiteAb