Product Citations: 8

Cold exposure induces vaso-occlusion and pain in sickle mice that depend on complement activation.

In Blood on 30 November 2023 by Ivy, Z., Belcher, J. D., et al.

Vaso-occlusive pain episodes (VOE) cause severe pain in patients with sickle cell disease (SCD). Vaso-occlusive events promote ischemia/reperfusion pathobiology that activates complement. We hypothesized that complement activation is linked to VOE. We used cold to induce VOE in the Townes sickle homozygous for hemoglobin S (HbSS) mouse model and complement inhibitors to determine whether anaphylatoxin C5a mediates VOE. We used a dorsal skinfold chamber to measure microvascular stasis (vaso-occlusion) and von Frey filaments applied to the plantar surface of the hind paw to assess mechanical hyperalgesia in HbSS and control Townes mice homozygous for hemoglobin A (HbAA) mice after cold exposure at 10°C/50°F for 1 hour. Cold exposure induced more vaso-occlusion in nonhyperalgesic HbSS mice (33%) than in HbAA mice (11%) or HbSS mice left at room temperature (1%). Cold exposure also produced mechanical hyperalgesia as measured by paw withdrawal threshold in HbSS mice compared with that in HbAA mice or HbSS mice left at room temperature. Vaso-occlusion and hyperalgesia were associated with an increase in complement activation fragments Bb and C5a in plasma of HbSS mice after cold exposure. This was accompanied by an increase in proinflammatory NF-κB activation and VCAM-1 and ICAM-1 expression in the liver. Pretreatment of nonhyperalgesic HbSS mice before cold exposure with anti-C5 or anti-C5aR monoclonal antibodies (mAbs) decreased vaso-occlusion, mechanical hyperalgesia, complement activation, and liver inflammatory markers compared with pretreatment with control mAb. Anti-C5 or -C5aR mAb infusion also abrogated mechanical hyperalgesia in HbSS mice with ongoing hyperalgesia at baseline. These findings suggest that C5a promotes vaso-occlusion, pain, and inflammation during VOE and may play a role in chronic pain.
© 2023 by The American Society of Hematology.

  • Cardiovascular biology

Neutrophil infiltration plays an important role in the initial phase of hepatic ischemia and reperfusion injury (HIRI). Despite many different key molecules that have been reported to meditate neutrophil trafficking in HIRI, the mechanism of this process has not been fully elucidated. In this study, we found that Carabin deficiency in myeloid cells (LysMCre : Carabinfl/fl) aggravated IRI-induced hepatic injury and apoptosis through increasing the infiltration of CD11b+Ly6G+ neutrophils. ImmGen Datasets further revealed that Carabin was expressed in bone marrow neutrophils (GM.BM) but was significantly downregulated in thio-induced peripheral neutrophils (GN.Thio.PC), which was consistently verified by comparing GM.BM and liver-infiltrating neutrophils induced by IRI. Mechanistically, up-regulation of Carabin in GM.BM in vitro reduced the expression levels of P-selectin, E-selectin, and αvβ3 integrin through inhibiting Ras-ERK and Calcineurin-NFAT signaling. Furthermore, blocking P-selectin, E-selectin, and αvβ3 integrin in LysMCre : Carabinfl/fl mice decreased the frequency and number of CD11b+Ly6G+ neutrophils and reversed hepatic ischemia-reperfusion damage. In conclusion, our results provide a new understanding of Carabin, such that it is expressed and functions not only in adaptive immune cells (T and B cells) but also in innate immune cells (neutrophils), contributing to the migration of neutrophils. These findings provide novel and promising therapeutic targets for the prevention of HIRI during liver transplantation or hepatic surgery.
Copyright © 2022 Ni, Wu, Zhu, Li, Yin and Lu.

  • Immunology and Microbiology

Interferon Gamma Mediates Hematopoietic Stem Cell Activation and Niche Relocalization through BST2.

In Cell Reports on 22 December 2020 by Florez, M. A., Matatall, K. A., et al.

During chronic infection, the inflammatory cytokine interferon gamma (IFNγ) damages hematopoietic stem cells (HSCs) by disrupting quiescence and promoting excessive terminal differentiation. However, the mechanism by which IFNγ hinders HSC quiescence remains undefined. Using intravital 3-dimensional microscopy, we find that IFNγ disrupts the normally close interaction between HSCs and CXCL12-abundant reticular (CAR) cells in the HSC niche. IFNγ stimulation increases expression of the cell surface protein BST2, which we find is required for IFNγ-dependent HSC relocalization and activation. IFNγ stimulation of HSCs increases their E-selectin binding by BST2 and homing to the bone marrow, which depends on E-selectin binding. Upon chronic infection, HSCs from mice lacking BST2 are more quiescent and more resistant to depletion than HSCs from wild-type mice. Overall, this study defines a critical mechanism by which IFNγ promotes niche relocalization and activation in response to inflammatory stimulation and identifies BST2 as a key regulator of HSC quiescence. VIDEO ABSTRACT.Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Stem Cells and Developmental Biology

Activated NK cells cause placental dysfunction and miscarriages in fetal alloimmune thrombocytopenia.

In Nature Communications on 9 August 2017 by Yougbare, I., Tai, W. S., et al.

Miscarriage and intrauterine growth restriction (IUGR) are devastating complications in fetal/neonatal alloimmune thrombocytopenia (FNAIT). We previously reported the mechanisms for bleeding diatheses, but it is unknown whether placental, decidual immune cells or other abnormalities at the maternal-fetal interface contribute to FNAIT. Here we show that maternal immune responses to fetal platelet antigens cause miscarriage and IUGR that are associated with vascular and immune pathologies in murine FNAIT models. Uterine natural killer (uNK) cell recruitment and survival beyond mid-gestation lead to elevated NKp46 and CD107 expression, perforin release and trophoblast apoptosis. Depletion of NK cells restores normal spiral artery remodeling and placental function, prevents miscarriage, and rescues hemorrhage in neonates. Blockade of NK activation receptors (NKp46, FcɣRIIIa) also rescues pregnancy loss. These findings shed light on uNK antibody-dependent cell-mediated cytotoxicity of invasive trophoblasts as a pathological mechanism in FNAIT, and suggest that anti-NK cell therapies may prevent immune-mediated pregnancy loss and ameliorate FNAIT.Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is a gestational disease caused by maternal immune responses against fetal platelets. Using a FNAIT mouse model and human trophoblast cell lines, here the authors show that uterine natural killer cell-mediated trophoblast apoptosis contributes to FNAIT pathogenesis.

Endothelial progenitor cells (EPCs) have been demonstrated to have stem-cell like as well as mature endothelial functions. However, controversy remains as to their origins, immunophenotypic markings, and contribution to the tumor vascular network and tumor survival.
Flow cytometric analysis and sorting was used to isolate Flk-1+/c-Kit+/CD45- cells. Matrigel and methycellulose assays, flow cytometry, and gene array analyses were performed to characterize several murine EPC cell populations. Human tumor xenografts were used to evaluate the impact of EPCs on tumor growth and vascular development.
Flk-1+/c-Kit+/CD45- cells were present at low levels in most murine organs with the highest levels in adipose, aorta/vena cava, and lung tissues. Flk-1+/c-Kit+/CD45- cells demonstrated stem cell qualities through colony forming assays and mature endothelial function by expression of CD31, uptake of acLDL, and vascular structure formation in matrigel. High passage EPCs grown in vitro became more differentiated and lost stem-cell markers. EPCs were found to have hemangioblastic properties as demonstrated by the ability to rescue mice given whole body radiation. Systemic injection of EPCs increased the growth of human xenograft tumors and vessel density.
Flk-1+/C-Kit+/CD45- cells function as endothelial progenitor cells. EPCs are resident in most murine tissue types and localize to human tumor xenografts. Furthermore, the EPC population demonstrates stem-cell and mature endothelial functions and promoted the growth of tumors through enhanced vascular network formation. Given the involvement of EPCs in tumor development, this unique host-derived population may be an additional target to consider for anti-neoplastic therapy.

  • Cancer Research
View this product on CiteAb